[1] 张亮亮. 多媒体技术在网球教学中的应用研究[J]. 文体用品与科技, 2018(16):96-98.
[2] 孙建秋. 巧用多媒体提高学生广播操的质量[J]. 青少年体育, 2014(9):57-58.
[3] 周升儒,陈志刚,邓伊琴. 基于PoseC3D的网球动作识别及评价方法[J]. 计算机工程与科学, 2023,45(1):95-103.
[4] 苏波,柴自强,王莉,等. 基于姿态估计的八段锦序列动作识别与评估[J]. 电子科学, 2022,35(12)84-90.
[5] 王云鹏,吕诗雨,司海平,等. 基于人体骨架的国标舞蹈动作相似度计算研究[J]. 电子设计工程, 2023,31(11):10-15.
[6] 贾亚光,刘静,雷森,等. 基于Alphapose的跑步动作标准化评估[J]. 计算机时代, 2023(8):117-120.
[7] 辛义忠,邢志飞. 基于Kinect的人体动作识别方法[J]. 计算机工程与设计, 2016,37(4):1056-1061.
[8] 于景华,王庆,陈洪. 基于动作评价算法的体感舞蹈交互系统[J]. 计算机与现代化, 2018(6):64-71.
[9] 蔡兴泉,霍宇晴,李发建,等. 面向太极拳学习的人体姿态估计及相似度计算[J]. 图学学报, 2022,43(4):695-706.
[10] DANG Q, YIN J Q, WANG B, et al. Deep learning based 2D human pose estimation: A survey[J]. Tsinghua Science and Technology, 2019,24(6):663-676.
[11] ZHENG C, WU W H, CHEN C, et al. Deep learning-based human pose estimation: A survey[J]. ACM Computing Surveys, 2023,56(1):Article No. 11.
[12] LI S J, ZHANG W C, CHAN A B. Maximum-margin structured learning with deep networks for 3D human pose estimation[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. IEEE, 2015:2848-2856.
[13] PAVLAKOS G, ZHOU X W, DANIILIDIS K. Ordinal depth supervision for 3D human pose estimation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018:7307-7316.
[14] PAVLAKOS G, ZHOU X W, DERPANIS K G, et al. Coarse-to-fine volumetric prediction for single-image 3D human pose[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:7025-7034.
[15] CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]// Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2017:7291-7299.
[16] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 5686-5696.
[17] NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[C]// Proceedings of the 2016 14th European Conference on Computer Vision. Springer, 2016:483-499.
[18] CHEN Y L, WANG Z C, PENG Y X, et al. Cascaded pyramid network for multi-person pose estimation[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018:7103-7112.
[19] WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:4724-4732.
[20] WANG J, LONG X, GAO Y, et al. Graph-PCNN: Two stage human pose estimation with graph pose refinement[C]// Proceedings of the 2020 16th European Conference on Computer Vision. Springer, 2020:492-508.
[21] MARTINEZ J, HOSSAIN R, ROMERO J, et al. A simple yet effective baseline for 3D human pose estimation[C]// Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2017:2640-2649.
[22] PAVLLO D, FEICHTENHOFER C, GRANGIER D, et al. 3D human pose estimation in video with temporal convolutions and semi-supervised training[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019:7753-7762.
[23] ZHENG C, ZHU S J, MENDIETA M, et al. 3D human pose estimation with spatial and temporal Transformers[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. IEEE, 2021:11636-11645.
[24] LI W H, LIU M Y, LIU H, et al. GraphMLP: A graph MLP-like architecture for 3D human pose estimation[J]. arXiv preprint arXiv:2206.06420, 2022.
[25] IONESCU C, PAPAVA D, OLARU V, et al. Human3. 6M: Large scale datasets and predictive methods for 3D human sensing in natural environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,36(7):1325-1339.
[26] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: New benchmark and state of the art analysis[C]// Proceedings of the IEEE Conference on computer Vision and Pattern Recognition. IEEE, 2014: 3686-3693.
[27] MAJI D, NAGORI S, MATHEW M, et al. YOLO-pose: Enhancing YOLO for multi person pose estimation using object keypoint similarity loss[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022:3686-3693.