[1] LIN Y B, GAO X H, ZHANG H Y, et al. Intelligent and interactive analog layout design automation[C]// IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT).IEEE, 2022:1-4.
[2] HUANG G Y, HU J B, HE Y F, et al. Machine learning for electronic design automation: A survey[J]. ACM Transactions on Design Automation of Electronic Systems, 2021,5(26):1-46.
[3] LOPERA D S, SERVADEI L, KIPRIT G N, et al. A survey of graph neural networks for electronic design automation[C]// Then 3rd Workshop on Machine Learning for CAD (MLCAD). ACM, 2021:1-6.
[4] MASSIER T, GRAEB H, SCHLICHTMANN U. The sizing rules method for CMOS and bipolar analog integrated circuit synthesis[J]. IEEE Transactions on Computer-Aided Design, 2008,27(12): 2209-2222.
[5] MEISSNER M, HEDRIC L. FEATS: Framework for explorative analog topology synthesis[J]. IEEE Transactions on Computer-Aided Design, 2015,34(2):213-226.
[6] HARJANI R, RUTENBAR R.A, CARLEY L.R. A prototype framework for knowledge-based analog circuit synthesis[C]// 24th ACM/IEEE Design Automation Conference. ACM, 1987:42-49.
[7] WU P H, LIN P H; CHEN T C, et al. A novel analog physical synthesis methodology integrating existent design expertise[J]. IEEE Transactions on Computer-Aided Design, 2015,34(2):199-212.
[8] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008,20(1):61-80.
[9] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,32(1):4-24.
[10] WILLIAM L, HAMILTON, REX Y, et al. Representation learning on graphs: Methods and applications[J]. IEEE Data Engineering Bulletin, 2017,40:52-74.
[11] XU B Y, ZHU K L, LIU M J, et al. MAGICAL: Toward fully automated analog IC layout leveraging human and machine intelligence[C]// 2019 International Conference on Computer-Aided Design (ICCAD). ACM,2019:1-8.
[12] HAMILTON W R, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems(NeurIPS). ACM, 2017:1024-1034.
[13] KUNAL K, POOJARY J, DHAR T, et al. A general approach for identifying hierarchical symmetry constraints for analog circuit layout[C]// 2020 International Conference On Computer Aided Design (ICCAD). ACM, 2020:1-8.
[14] DEFFERRARD M, BRESSON X, VANDERGHEYNS P. Convolutional neural networks on graphs with fast localized spectral filtering[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems (NeurIPS). ACM, 2016:3844-3852.
[15] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]// International Conference on Learning Representations (ICLR). ICLR, 2016:1-14.
[16] LIOU G H, WANG S H, SU Y Y ,et al. Classifying analog and digital circuits with machine learning techniques toward mixed-signal design automation[C]// 2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD). IEEE, 2018:173-176.
[17] LI H, JIAO F S, DOBOLI A. Analog circuit topological feature extraction with unsupervised learning of new sub-structures[C]// 2016 Design, Automation & Test in Europe Conference & Exhibition. IEEE, 2016:1509-1512.
[18] KUNAL K, TONMOY D, MEGHNA M, et al. GANA: Graph convolutional network based automated netlist annotation for analog circuits[C]// 2020 Design, Automation & Test in Europe Conference & Exhibition. IEEE, 2020:55-60.
[19] KUNAL K, TONMOY D, MEGHNA M, et al. ALIGN: Open-source Analog Layout Automation from the ground up[C]// 2019 56th ACM/IEEE Design Automation Conference. IEEE, 2019:1-4.
[20] LIU M J, LI W X, ZHU K R, et al. S3DET: Detecting system symmetry constraints for analog circuits with graph similarity[C]// 2020 25th Asia and South Pacific Design Automation Conference. IEEE, 2020:193-198.
[21] CHEN H, ZHU K R, LIU M J, et al. Universal symmetry constraint extraction for analog and mixed-signal circuits with graph neural networks[C]// Design Automation Conference. ACM, 2021:1243-1248.
[22] REN H X, KOKAI G F, TURNER W J, et al. ParaGraph: Layout parasitics and device parameter prediction using graph neural networks[C]// 2020 57th Design Automation Conference. ACM, 2020: 1-6.
[23] GAO X H, DENG C H, LIU M J, et al. Layout symmetry annotation for analog circuits with graph neural networks[C]// 2021 26th Asia and South Pacific Design Automation Conference. IEEE, 2021:152-157.
[24] YING R, H R N, et al. Graph convolutional neural networks for web-scale recommender systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018:974-983.
[25] LIU M J, ZHU K R, GU J Q, et al. Towards decrypting the art of analog layout, placement quality prediction via transfer learning[C]// 2020 Design, Automation & Test in Europe Conference & Exhibition. IEEE, 2020:496-501.
[26] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv preprint arXiv:1710.10
903, 2017.
[27] LI Q, WANG D L, FENG S, et al. Global graph attention embedding network for relation prediction in knowledge graphs[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022,33(11):6712-6725.