Image Quality Assessment with Multi-scale Interaction and Cross-channel Attention
(1.School of Information Engineering, East China University of Technology, Nanchang 330013, China; 2. Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, Nanchang 330013, China)
[1] MIER J C, HUANG E, TALEBI H, et al. Deep perceptual image quality assessment for compression[C]// 2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021:1484-1488.
[2] MANDAL M, GHADIYARAM D, GURARI D, et al. Helping visually impaired people take better quality pictures[J]. IEEE Transactions on Image Processing, 2023, 32: 3873-3884
[3] GUO C L, WU R Q, JIN X, et al. Underwater ranker: Learn which is better and how to be better[C]// Proceedings of the 2023 AAAI Conference on Artificial Intelligence. AAAI, 2023:702-709.
[4] 鄢杰斌,方玉明,刘学林. 图像质量评价研究综述——从失真的角度[J]. 中国图象图形学报, 2022,27(5):1430- 1466.
[5] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a completely blind image quality analyzer[J]. IEEE Signal Processing Letters, 2012,20(3):209-212.
[6] KE J J, WANG Q F, WANG Y L, et al. MUSIQ: Multi-scale image quality transformer[C]// Proceedings of the 2021 IEEE/ CVF International Conference on Computer Vision (ICCV). IEEE, 2021:5148-5157.
[7] DING K Y, MA K D, WANG S Q, et al. Image quality assessment:Unifying structure and texture similarity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,44(5):2567-2581.
[8] GOLESTANEH S A, DADSETAN S, KITANI K M. No-reference image quality assessment via transformers, relative ranking, and self-consistency[C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2022:1220-1230.
[9] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017,30:5999- 6009.
[10] YOU J Y, KORHONEN J. Transformer for image quality assessment[C]// 2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021:1389 -1393.
[11] SHI J S, GAO P, SMOLIC A. Blind image quality assessment via transformer predicted error map and perceptual quality token[J]. IEEE Transactions on Multimedia, 2023,26:4641- 4651.
[12] SHI J S, GAO P, QIN J. Transformer-based no reference image quality assessment via supervised contrastive learning[C]// Proceedings of the 2024 AAAI Conference on Artificial Intelligence. AAAI, 2024:4829- 4837.
[13] QIN G Y, HU R Z, LIU Y T, et al. Data-efficient image quality assessment with attention-panel decoder[C]// Proceedings of the 2023 AAAI Conference on Artificial Intelligence. AAAI, 2023:2091-2100.
[14] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016:770-778.
[15] RANJAN R, PATEL V M, CHELLAPPA R. Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,41(1):121-135.
[16] XU W J, XU Y F, CHANG T, et al. Co-scale conv-attentional image transformers[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021:9981-9990.
[17] VIRTANEN T, NUUTINEN M, VAAHTERANOKSA M, et al. CID2013: A database for evaluating no reference image quality assessment algorithms[J]. IEEE Transactions on Image Processing, 2014,24(1):390-402.
[18] GHADIYARAM D, BOVIK A C. Massive online crowd- sourced study of subjective and objective picture quality[J]. IEEE Transactions on Image Processing, 2015,25(1):372- 387.
[19] HOSU V, LIN H H, SZIRANYI T, et al. KonIQ-10k:An ecologically valid database for deep learning of blind image quality assessment[J]. IEEE Transactions on Image Processing, 2020,29:4041-4056.
[20] YING Z Q, NIU H R, GUPTA P, et al. From patches to pictures (PaQ-2-PiQ): Mapping the perceptual space of picture quality[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020:3575-3585.
[21] FANG Y M, ZHU H W, ZENG Y, et al. Perceptual quality assessment of smartphone photography[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020:3677-3686.
[22] KANG L, YE P, LI Y, et al. Convolutional neural networks for no-reference image quality assessment[C]// Proceedings of the 2014 IEEE conference on Computer Vision and Pattern Recognition. IEEE, 2014:1733-1740.
[23] MURRAY N, MARCHESOTTI L, PERRONNIN F. AVA: A large-scale database for aesthetic visual analysis[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012:2408-2415.
[24] KOSTI R, ALVAREZ J M, RECASENS A, et al. EMOTIC: Emotions in context dataset[C]// Proceedings of the 2017 IEEE conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2017: 61-69.
[25] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010,88:303-338.
[26] SHI J P, XU L, JIA J Y. Discriminative blur detection features[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014:2965-2972.
[27] BOSSE S, MANIRY D, MÜLLER K R, et al. Deep neural networks for no-reference and full-reference image quality assessment[J]. IEEE Transactions on Image Processing, 2017, 27(1):206-219.
[28] SU S L, YAN Q S, ZHU Y, et al. Blindly assess image quality in the wild guided by a self-adaptive hyper network[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020:3667- 3676.
[29] ZHANG W X, MA K D, YAN J, et al. Blind image quality assessment using a deep bilinear convolutional neural network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020,30(1):36-47.
[30] PAN Z Q, ZHANG H, LEI J J, et al. DACNN: Blind image quality assessment via a distortion-aware convolutional neural network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022,32(11):7518-7531.
[31] SONG T S, LI L D, CHEN P F, et al. Blind image quality assessment for authentic distortions by intermediary enhancement and iterative training[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022,32(11):7592-7604.
[32] YANG S D, WU T H, SHI S W, et al. MANIQA: Multi-dimension attention network for no-reference image quality assessment[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022:1191-1200.