Computer and Modernization ›› 2025, Vol. 0 ›› Issue (05): 48-59.doi: 10.3969/j.issn.1006-2475.2025.05.007
Previous Articles Next Articles
Online:
2025-05-29
Published:
2025-05-29
CLC Number:
JIANG Sulun1, 2, 3, YUAN Decheng1, GUO Qingda2, 3, LIU Jian3, YU Guangping2, 3. Survey of Application of Knowledge Graph in Field of Intelligent Manufacturing[J]. Computer and Modernization, 2025, 0(05): 48-59.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.c-a-m.org.cn/EN/10.3969/j.issn.1006-2475.2025.05.007
[1] HOC J M. Towards a cognitive approach to human-machine cooperation in dynamic situations[J]. International Journal of Human-Computer Studies, 2001,54(4):509-540. [2] SINGHAL A. Introducing the Knowledge Graph: Things, not Strings[EB/OL]. (2012-05-16)[2024-05-01]. https://blog. google/products/search/introducing-knowledge-graph- things-not/. [3] 李涓子,侯磊. 知识图谱研究综述[J]. 山西大学学报(自然科学版), 2017,40(3):454-459. [4] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: A collaboratively created graph database for structuring human knowledge[C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. ACM, 2008:1247-1250. [5] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: A nucleus for a web of open data[C]// 6th Intermational Semantic Web Conference. Springer, 2007:722-735. [6] CARLSON A, BETTERIDGE J, KISIEL B, et al. Toward an architecture for never-ending language learning[C]// Proceedings of the 24th AAAI Conference on Artificial Intelligence. AAAI, 2010,24(1):1306-1313. [7] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: A core of semantic knowledge[C]// Proceedings of the 16th International Conference on World Wide Web. ACM, 2007:697-706. [8] 潘纹. 计算机图形技术在机械制造中的研究[J]. 煤炭技术, 2013,32(7):23-24. [9] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. AAAI, 2014,28(1):1112-1119. [10] XU J, KIM S, SONG M, et al. Building a PubMed knowledge graph[J]. Scientific Data, 2020,7(1):205. DOI: 10. 6084/m9.figshare.12452597 [11] 林衍凯. 大规模结构化知识的表示学习、自动获取与计算应用[D]. 北京:清华大学, 2019. [12] 吴伟志. 多粒度粗糙集数据分析研究的回顾与展望[J]. 西北大学学报(自然科学版), 2018,48(4):501-512. [13] ZADEH L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems, 1997,90(2):111-127. [14] 冯志强,焦自权,陈善本,等. 船体外板水火加工过程的粗糙集建模方法[J]. 电子技术与软件工程, 2017(17):160-161. [15] 李金海,王飞,吴伟志,等. 基于粒计算的多粒度数据分析方法综述[J]. 数据采集与处理, 2021,36(3):418-435. [16] 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 山东大学学报(理学版), 2022,57(9):33-45. [17] POULYMENAKOU A, CORNFORD T, WHITELY E A. Pragmatic considerations for effective knowledge acquisition: The case of business expert systems[C]// Proceedings of the 1990 ACM SIGBDP Conference on Trends and Directions in Expert Systems(SIGBDP’90). ACM, 1990:237-246. [18] MCCALLUM A, LI W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons[C]// Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL. ACM, 2003:188-191. [19] ACHARYA U R, OH S L, HAGIWARA Y, et al. A deep convolutional neural network model to classify heartbeats[J]. Computers in Biology and Medicine, 2017,89:389-396. [20] BORTHWICK A. A Maximum Entropy Approach to Named Entity Recognition[D]. New York University, 1999. [21] QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986,1(1):81-106. [22] KIM J H, WOODLAND P C. A rule-based named entity recognition system for speech input[C]// The 6th International Conference on Spoken Language Processing (ICSLP 2000). ISCA, 2000:528-531. [23] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006,313(5786):504-507. [24] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 2016:260-270. [25] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv:1508.01991, 2015. [26] 潘雨黛,张玲玲,蔡忠闽,等. 基于大规模语言模型的知识图谱可微规则抽取[J]. 计算机科学与探索, 2023,17(10):2403-2412. [27] ZHOU G D, ZHANG M, JI D H, et al. Tree kernel-based relation extraction with context-sensitive structured parse tree information[C]// Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Association for Computational Linguistics, 2007:728-736. [28] MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]// Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP(ACL-IJCNLP’09). Association for Computational Linguistics, 2009:1003-1011. [29] ZENG D J, LIU K, LAI S W, et al. Relation classification via convolutional deep neural network[C]// Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. Dublin City University and Association for Computational Linguistics, 2014:2335-2344. [30] 张富,杨琳艳,李健伟,等. 实体对齐研究综述[J]. 计算机学报, 2022,45(6):1195-1225. [31] LONG T, LOWE R, CHEUNG J C K, et al. Leveraging lexical resources for learning entity embeddings in multi-relational data[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2016:112-117. [32] TARI L. Knowledge inference[M]// Encyclopedia of Systems Biology. Springer New York, 2013:1074-1078. [33] CHEN X J, JIA S B, XIANG Y. A review: Knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020,141:112948.1-112948.21. [34] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[M]// The Semantic Web: Vol. 10843. Springer International Publishing, 2018:593-607. [35] 张仲伟,曹雷,陈希亮,等. 基于神经网络的知识推理研究综述[J]. 计算机工程与应用, 2019,55(12):8-19. [36] YAN H H, YANG J, WAN J F. KnowIME: A system to construct a knowledge graph for intelligent manufacturing equipment[J]. IEEE Access, 2020,8:41805-41813. [37] FU L J, BAI Y, ZHONG Z Y. Constructing a vertical knowledge graph for non-traditional machining industry[C]// 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). IEEE, 2018. DOI: 10.1109/ICNSC.2018.8361341. [38] 刘峤,李杨,段宏,等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016,53(3):582-600. [39] LIANG H, PENG X J, ZHAO N N, et al. An approach of top-DOWN electric generation knowledge graph construction[J]. IOP Conference Series: Earth and Environmental Science, 2021, 661(1). DOI: 10.1088/1755-1315/661/1/012021. [40] ZHENG P, XIA L Q, LI C X, et al. Towards Self-X cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach[J]. Journal of Manufacturing Systems, 2021,61:16-26. [41] XIA L Q, LIANG Y S, LENG J W, et al. Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network[J]. Reliability Engineering & System Safety, 2023,232. DOI: 10.1016/j.ress.2022.109068. [42] ARISTA R, ZHENG X C, LU J Z, et al. An ontology-based engineering system to support aircraft manufacturing system design[J]. Journal of Manufacturing Systems, 2023,68:270-288. [43] KO H, WITHERELL P, LU Y, et al. Machine learning and knowledge graph based design rule construction for additive manufacturing[J]. Additive Manufacturing, 2021,37. DOI: 10.1016/j.addma.2020.101620. [44] SALTON G, BUCKLEY C. Term-weighting approaches in automatic text retrieval[J]. Information Processing & Management, 1988,24(5):513-523. [45] BOSSELUT A, RASHKIN H, SAP M, et al. COMET: Commonsense transformers for automatic knowledge graph construction[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2019:4762-4779. [46] WU X D, WU J, FU X Y, et al. Automatic knowledge graph construction: A report on the 2019 ICDM/ICBK contest[C]// 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019:1540-1545. [47] JAWALKAR S A, CAMPBELL M I. Automated synthesis of MEMS fabrication sequences using graph grammars[C]// The 33rd Design Automation Conference, Parts A and B. ASMEDC, 2007:421-431. [48] ZHANG H M, KHASHABI D, SONG Y Q, et al. TransOMCS: From linguistic graphs to commonsense knowledge[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence(IJCAI-20). International Joint Conferences on Artificial Intelligence Organization, 2020:3984-3990. [49] 吴信东,盛绍静,蒋婷婷,等. 从知识图谱到数据中台:华谱系统[J]. 自动化学报, 2020,46(10):2045-2059. [50] CHEN Z Y, LIU Y, VALERA-MEDINA A, et al. Multi-sourced modelling for strip breakage using knowledge graph embeddings[C]// The 4th CIRP Conference on Manufacturing Systems. CIRP, 2022:1884-1889. [51] 卞嘉楠,冒泽慧,姜斌,等. 基于知识图谱和多任务学习的工业生产关键设备故障诊断方法[J]. 中国科学(信息科学), 2023,53(4):699-714. [52] 邓建峰,张宝奇,茹庆文. 线岔处弓网故障原因分析及对策[J]. 电气化铁道, 2022,33(6):56-59. [53] 刘劲松. 高档数控机床数字孪生关键技术研究与应用[D]. 沈阳:中国科学院沈阳计算技术研究所, 2022. [54] DING Y, LI H, ZHU F, et al. A semi-supervised failure knowledge graph construction method for decision support in operations and maintenance[J]. IEEE Transactions on Industrial Informatics, 2024,20(3):3104-3114. [55] SHAFTO M, CONROY M, DOYLE R, et al. DRAFT Modeling, Simulation, Information Technology & Processing Roadmap Technology Area 11: Area 11[R]. National Aeronautics and Space Administration, 2010. [56] LIU M N, FANG S L, DONG H Y, et al. Review of digital twin about concepts, technologies, and industrial applications[J]. Journal of Manufacturing Systems, 2021, 58:346-361. [57] 丁志昆,孙奕程,段亮亮,等. 基于数字孪生的增强现实多人协作装配[J]. 计算机集成制造系统, 2023,29(6):2019-2034. [58] BANERJEE A, DALAL R, MITTAL S, et al. Generating digital twin models using knowledge graphs for industrial production lines[C]// Proceedings of the 2017 ACM on Web Science Conference. ACM, 2017:425-430. [59] ZHU Y H, CHEN D Y, ZHOU C, et al. A knowledge graph based construction method for digital twin network[C]// 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). IEEE, 2021:362-365. [60] LIU Q, LI J. The progress of business analytics and knowledge management for enterprise performance using artificial intelligence and man-machine coordination[J]. Journal of Global Information Management, 2022,30(11):1-21. [61] NARDO M, FORINO D, MURINO T. The evolution of man-machine interaction: The role of human in industry 4.0 paradigm[J]. Production & Manufacturing Research, 2020,8(1):20-34. [62] 王骏东,杨军,裴洋舟,等. 基于知识图谱的配电网故障辅助决策研究[J]. 电网技术, 2021,45(6):2101-2112. [63] HOU Z, YU B S, QIAO Y, et al. Detecting human-object interaction via fabricated compositional learning[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021:14641-14650. [64] MASSINGHAM P. Knowledge risk management: A framework[J]. Journal of Knowledge Management, 2010,14(3):464-485. [65] VERHAEGEN T. Knowledge makes risks manageable[J]. Business Insurance: Industry Focus, 2005, 3:16-17. [66] LIU C, YANG S W. Using text mining to establish knowledge graph from accident/incident reports in risk assessment[J]. Expert Systems with Applications, 2022, 207: 117991.1-117991.20. [67] 刘烨宸,李华昱. 领域知识图谱研究综述[J]. 计算机系统应用, 2020,29(6):1-12. [68] PANDITHAWATTA S, AHN S, RAMEEZDEEN R, et al. Development of a knowledge graph for automatic job hazard analysis: The schema[J]. Sensors, 2023,23(8). DOI:10.3390/s23083893. [69] CHEN J B, LU G H, PAN Z N, et al. Research review of the knowledge graph and its application in power system dispatching and operation[J]. Frontiers in Energy Research, 2022,10. DOI: 10.3389/fenrg.2022.896836. [70] ZHAO Q, LI Q, WEN J Q. Construction and application research of knowledge graph in aviation risk field[J]. MATEC Web of Conferences, 2018,151. DOI:10.1051/MATECCONF/201815105003. [71] 王子维,夏向阳,冯伟. 知识图谱在海上油气领域安全风险管理中的应用[J]. 船舶工程, 2023,45(增1):323-325. [72] SHI Y T, ZHAO L, ZHOU M, et al. A dynamic community gas risk-prediction method based on temporal knowledge graphs[J]. Transactions of the Institution of Chemical Engineers. Process Safety and Environmental Protection, Part B, 2023, 177: 436-445. [73] CHEN J H, ZHONG S B, GE X T, et al. Spatio-temporal knowledge graph for meteorological risk analysis[C]// 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, 2021: 440-447. [74] WU J Y, GAN W S, CHEN Z F, et al. AI-generated content(AIGC): A survey[J]. arXiv preprint arXiv:2304.06632, 2023. [75] SIMON S, CHRISTOPH W, UTE S. Comprehensible artificial inteligence on knowledge graphs: A survey[J]. Jaurnal of Web Semantics, 2023,79. DOI: 10.1016/j.websem.2023.100806. [76] WANG H, NING H S, LIN Y J, et al. A survey on the metaverse: The state-of-the-art, technologies, applications, and challenges[J]. IEEE Internet of Things Journal, 2023,10(16):14671-14688. [77] 刘树锋. 大数据时代AIGC与多模态知识图谱的思考与展望[J]. 互联网周刊, 2023(15):49-51. [78] 牟天昊,李少远. 流程工业控制系统的知识图谱构建[J]. 智能科学与技术学报, 2022,4(1):129-141. [79] MORGAN T R, ROATH A S, GLENN RICHEY R. How risk, transparency, and knowledge influence the adaptability and flexibility dimensions of the responsiveness view[J]. Journal of Business Research, 2023,158. DOI: 10.1016/j. jbusres.2022.113641. [80] ROSSI A, BARBOSA D, FIRMANI D, et al. Knowledge graph embedding for link prediction: A comparative analysis[J]. ACM Transactions on Knowledge Discovery from Data, 2021,15(2):1-49. [81] ZENG X X, TU X Q, LIU Y S, et al. Toward better drug discovery with knowledge graph[J]. Current Opinion in Structural Biology, 2022,72:114-126. [82] LIU Y, ZENG Q G, ORDIERES MERÉ J, et al. Anticipating stock market of the renowned companies: A knowledge graph approach[J]. Complexity, 2019,2019. DOI: 10.1155/ 2019/920245. [83] YANG Y J, LI Z F, WANG X, et al. Finding the shortest path with vertex constraint over large graphs[J]. Complexity, 2019, 2019: 8728245. DOI: 10.1155/2019/8728245. [84] MEISELMAN H L. A review of the current state of emotion research in product development[J]. Food Research International, 2015,76:192-199. [85] LI X Y, CHEN C H, ZHENG P, et al. A context-aware diversity-oriented knowledge recommendation approach for smart engineering solution design[J]. Knowledge-Based Systems, 2021,215:106739.1-106739.16. [86] ZHENG X, WANG B, ZHAO Y M, et al. A knowledge graph method for hazardous chemical management: Ontology design and entity identification[J]. Neurocomputing, 2021,430:104-111. |
[1] | LANG Kun, NIU Chunhui, LI Chenqiong, ZENG Suyu. Box Office Prediction Model Based on SA-EW-LSTM [J]. Computer and Modernization, 2025, 0(05): 1-9. |
[2] | WANG Xing1, ZHONG Haili1, YU Yang2, LI Zhentao2, BAI Chuang1. Interference Suppression Algorithm for Millimeter Wave Radar Based on Independent Component Analysis [J]. Computer and Modernization, 2025, 0(05): 21-27. |
[3] | WANG Chengxian1, ZHAO Qing2. Yi Language Named Entity Recognition Method Based on CR-BACC Model [J]. Computer and Modernization, 2025, 0(05): 28-35. |
[4] | CHI Biwei1, SUN Rui2. DDoS Attack Detection Method Based on Transformer Architecture [J]. Computer and Modernization, 2025, 0(05): 36-40. |
[5] | XU Shengchao1, ZHOU Jipeng2. Cloud-PERM: Ab Initio Prediction Method for Protein Folding Simulation [J]. Computer and Modernization, 2025, 0(05): 73-78. |
[6] | SHI Xianwei1, FAN Xin2. Scene Semantic Segmentation Based on Regional Self-attention [J]. Computer and Modernization, 2025, 0(05): 122-126. |
[7] | CHENG Zhang, LIU Dan, WANG Yanxia. Gaze Estimation Model Based on Hybrid Transformer [J]. Computer and Modernization, 2025, 0(04): 1-5. |
[8] | JI Zhengjie, WEI Linjing. ICS-ResNet: A Lightweight Network for Maize Leaf Disease Classification [J]. Computer and Modernization, 2025, 0(04): 19-28. |
[9] | SUN Qining1, GUI Zhiming1, LIU Yanfang2, FAN Xinxin3, LU Yunfeng4. Graph Neural Network-based Multi-agent Reinforcement Learning for Adversarial Policy Detection Algorithm [J]. Computer and Modernization, 2025, 0(04): 42-49. |
[10] | ZHANG Huiyu1, LIU Lei1, YAN Dongmei2, LIANG Chengqing3. UAV Path Planning Based on YOLO and PPO [J]. Computer and Modernization, 2025, 0(04): 50-55. |
[11] | WU Yichuan. A3C Based Task Offloading and Resource Allocation Algorithm for Internet of Vehicles [J]. Computer and Modernization, 2025, 0(04): 56-62. |
[12] | LIU Wenxin1, XU Wenhui1, CHEN Zhaoye1, GU Haiying1, WEN Cong2, YAO Yulong2, ZENG Xi2. Predictive Modeling of Ash Conveying in Thermal Power Plants Based on RFECV-XGBoost and SHAP [J]. Computer and Modernization, 2025, 0(04): 63-69. |
[13] | ZHOU Jing1, 2, LIU Dunlong1, 2, SANG Xuejia1, 2, ZHANG Shaojie3, YANG Hongjuan3. Identification Method for Potential Debris Flow Basins in the Wenchuan Earthquake-Affected Area Based on CNN-KAN [J]. Computer and Modernization, 2025, 0(04): 70-76. |
[14] | LI Kai, JIN Yunpeng, LI Haiyang, KONG Shasha, YANG Peng, FANG Chengwu, HUANG Xiangjie, HAN Yaosheng, LI Chunmei. AGP Calculation Methods in UAV Imagery Based on Image Segmentation [J]. Computer and Modernization, 2025, 0(04): 83-88. |
[15] | WANG Lidan1, ZHAO Huaici2, PAN Duotao1, FANG Jian2, YUAN Decheng1. Infrared and Visible Image Fusion Based on Twin Axial-attention and Dual-discriminator Generative Adversarial Network [J]. Computer and Modernization, 2025, 0(04): 89-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||