Edge Computing Unloading Method for Intelligent Elderly Care
(1. School of Computer Science, School of Software, School of Cyberspace Security, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2. Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210023, China)
LI Shuang1, 2, YE Ning1, 2, XU Kang1, 2, WANG Su1, WANG Ruchuan1, 2. Edge Computing Unloading Method for Intelligent Elderly Care[J]. Computer and Modernization, 2024, 0(06): 95-102.
[1] 朱庆华,吴琼,郭雨辰,等. 养老服务数据融合需求分析和框架设计[J]. 文献与数据学报, 2020,2(3):3-16.
[2] 刘振鹏,郭超,王仕磊,等. 基于博弈论和启发式算法的超密集网络边缘计算卸载[J]. 计算机工程,2022,48(12):54-61.
[3] 战俊伟, 庄毅. 基于能耗与延迟优化的移动边缘计算任务卸载模型及算法[J]. 计算机与现代化, 2022(8):86-93.
[4] 施丽琴,叶迎晖,卢光跃. 无线供能边缘计算网络中系统计算能效最大化资源分配方案[J]. 通信学报, 2020,41(10):59-69.
[5] WEI X J, WANG S G, ZHOU A,et al. MVR: An architecture for computation offloading in mobile edge computing[C]// Proceedings of 2017 IEEE 1st International Conference on Edge Computing, EDGE 2017. Honolulu, HI, United states, 2017: 232-235.
[6] YI S, HAO Z, ZHANG Q,et al. LAVEA: Latency-aware video analytics on edge computing platform[C]// Proceedings-International Conference on Distributed Computing Systems: Atlanta, GA, United states, 2017: 2573-2574.
[7] HU X, HUANG Y,et al. Deep reinforcement learning based offloading decision algorithm for vehicular edge computing[J]. PeerJ Computer Science, 2022,8. DOI:http://dx.doi.org/10.7717/PEERJ-CS.1126.
[8] 张彦虎,鄢丽娟,马志愤,等. 一种适用于多任务多资源移动边缘计算环境下的改进粒子群算力卸载算法[J]. 计算机与现代化, 2022(5):54-60.
[9] 陈刚,王志坚,徐胜超. 基于粒子群算法的移动边缘计算任务分配方法[J]. 计算机与现代化, 2022(11):32-36.
[10] LI K. Heuristic computation offloading algorithms for mobile users in fog computing[J]. ACM Transactions on Embedded Computing Systems, 2021,20(2). DOI:http://dx.doi.org/10.1145/3426852.
[11] CHEN Y, ZHANG N, ZHANG Y C,et al. Energy efficient dynamic offloading in mobile edge computing for internet of things[J]. IEEE Transactions on Cloud Computing, 2021,9(3):1050-1060.
[12] 马丽丽,张文东,李智威,等. 基于李雅普诺夫优化的任务卸载优化算法[J]. 微电子学与计算机, 2022,39(11):19-26.
[13] BI S, HUANG L, WANG H,et al. Lyapunov-guided deep reinforcement learning for stable online computation offloading in mobile-edge computing networks[J]. IEEE Transactions on Wireless Communications, 2021,20(11):7519-7537.
[14] 付主木,王俊朋,司鹏举,等. 基于李雅普诺夫随机优化的车辆边缘计算资源管理[J]. 控制与决策, 2022,37(3):721-728.
[15] 陈晗頔,赵婷婷. 基于长短期记忆神经网络的车辆边缘计算卸载策略[J]. 计算机应用与软件, 2021,38(7):53-59.
[16] GEORGIADIS L, NEELY M J, TASSIULAS L. Resource allocation and cross-layer control in wireless networks[J]. Foundations and Trends[Ⓡ] in Networking, 2006,1(1):1-144. DOI:10.1561/1300000001.
[17] NEELY M J. Stochastic network optimization with application to communication and queueing systems[C]// Synthesis Lectures on Communication Networks:. 2010:1-199. http://dx.doi.org/10.2200/S00271ED1V01Y201006CNT007.
[18] 刘全,翟建伟,章宗长,等. 深度强化学习综述[J]. 计算机学报, 2018,41(1):1-27.
[19] 刘晓宇,许驰,曾鹏等. 面向异构工业任务高并发计算卸载的深度强化学习算法[J]. 计算机学报, 2021,44(12):2367-2381.
[20] 彭坤彦,尹翔,刘笑竹,等. 基于粒子群优化和深度强化学习的策略搜索方法[J]. 计算机工程与科学, 2023,45(4):718-725.
[21] 张依琳,梁玉珠,尹沐君,等. 移动边缘计算中计算卸载方案研究综述[J]. 计算机学报, 2021,44(12):2406-2430.
[22] 高志华,张源. 智慧社区居家养老服务模式研究[J]. 现代商贸工业, 2021,42(3):78-79.
[23] 郭晶,张玲芝,袁亚琴,等. 医养结合居家医护服务体系的构建与管理[J]. 中华护理杂志, 2018,53(7):773-777.
[24] 丁忠林, 李洋, 曹委,等. 基于深度Q学习的电力物联网任务卸载研究[J]. 计算机与现代化, 2022(11): 75-80.
[25] 陈亮,梁宸,张景异,等. Actor-Critic框架下一种基于改进DDPG的多智能体强化学习算法[J]. 控制与决策, 2021,36(1):75-82.
[26] CHEN J, XING H L, XIAO Z W,et al. A DRL agent for jointly optimizing computation offloading and resource allocation in MEC[J]. IEEE Internet of Things Journal, 2021,8(24):17508-17524.
[27] KALLESTAD J, HASIBI R, HEMMATI A, et al. A general deep reinforcement learning hyperheuristic framework for solving combinatorial optimization problems[J]. European Journal of Operational Research, 2023,309(1):446-468.