3-D Tomography Method Based on Ground-based Multi-channel Ice-penetrating Radar
(1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; 2. Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China; 3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)
[1] 崔祥斌,孙波,张向培,等. 极地冰盖冰雷达探测技术的发展综述[J]. 极地研究, 2009, 21(4):322-335.
[2] 崔祥斌,孙波,田钢,等. 冰雷达探测研究南极冰盖的进展与展望[J]. 地球科学进展, 2009,24(4):392-402
[3] GOGINENI S, PRESCOTT G, BRAATEN D, et al. Polar radar for ice sheet measurements[C]// IGARSS 2003. IEEE International Geoscience and Remote Sensing Symposium. Proceedings. IEEE,2003,3:1607-1609.
[4] MINGO L, FLOWERS G E. An integrated lightweight ice-penetrating radar system[J]. Journal of Glaciology, 2010,56(198):709-714.
[5] LEUSCHEN C, GOGINENI S, TAMMANA D. SAR processing of radar echo sounder data[C]// 2000 International Geoscience and Remote Sensing Symposium. IEEE, 2000,6:2570-2572.
[6] ALLEN C, PADEN J, DUNSON D, et al. Ground-based multi-channel synthetic-aperture radar for mapping the ice-bed interface[C]// 2008 IEEE Radar Conference. IEEE, 2008. DOI: 10.1109/RADAR. 2008.4720992.
[7] PADEN J, AKINS T, DUNSON D, et al. Ice-sheet bed 3-D tomography[J]. Journal of Glaciology, 2010,56(195): 3-11.
[8] WANG A, LIU L, ZHANG J. Low complexity direction of arrival (DoA) estimation for 2D massive MIMO systems[C]// 2012 IEEE Globecom Workshops. IEEE, 2012:703-707.
[9] STOICA P, NEHORAI A, et al. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989,37(5):720-741.
[10] NIELSEN U, YAN J B, GOGINENI S, et al. Direction-of-arrival analysis of airborne ice depth sounder data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4):2239-2249.
[11] QIU S, MA X, ZHANG R, et al. A dual-resolution unitary ESPRIT method for DOA estimation based on sparse co-prime MIMO radar[J]. Signal Processing. 2023,202,108753.
[12] BENCHEIKH M L, WANG Y, HE H. Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar[J]. Signal Processing, 2010,90(9):2723-2730.
[13] WAGNER M, PARK Y, GERSTOFT P. Gridless DOA estimation and root-MUSIC for non-uniform linear arrays[J]. IEEE Transactions on Signal Processing, 2021,69(7):2144-2157.
[14] KANAGARATNAM P, GOGINENI S P, GUNDESTRUP N, et al. High‐resolution radar mapping of internal layers at the north greenland ice core project[J]. Journal of Geophysical Research: Atmospheres, 2001,106(D24):33799-33811.
[15] DUNSON D R. A wideband synthetic aperture radar for ice sheet basal measurements[D]. University of Kansas, 2006.
[16] PADEN J. Bistatic/monostatic synthetic aperture radar for ice sheet measurements[D]. University of Kansas, 2003.
[17] PADEN J. Synthetic aperture radar for imaging the basal conditions of the polar ice sheets[D]. University of Kansas, 2006.
[18] GRIFFITHS H D. Synthetic aperture processing for full-deramp radar altimeters [J]. Electronics Letters, 1988,24(7):371-373.
[19] LI J. Mapping of ice sheet deep layers and fast outlet glaciers with multi-channel-high-sensitivity radar[D]. Universi ty of Kansas, 2009.
[20] JEZEK K C, GOGINENI S, WU X, et al. Two-frequency radar experiments for sounding glacier ice and mapping the topography of the glacier bed[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,49(3):920-929.
[21] WU X Q, JEZEK K, RODRIGUEZ E, et al. Airborne SAR tomographic ice sheet sounding[C]// The 8th European Conference on Synthetic Aperture Radar. VDE, 2010.
[22] PADEN J, ALLEN C, GOGINENI P. 3D imaging of ice sheets[C]// 2010 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010:2611-2613.
[23] WANG Z, GOGINENI S, RODRIGUEZ-MORALES F, et al. Multichannel wideband synthetic aperture radar for ice sheet remote sensing: Development and the first deployment in Antarctica[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015,9(3):980-993.
[24] YUAN T, ZHENG X, HU X, et al. A method for the evaluation of image quality according to the recognition effectiveness of objects in the optical remote sensing image using machine learning algorithm[J]. PloS One, 2014,9(1):86-88.
[25] LV Y, MAO W, CUI Y. Joint DOD and DOA detection for MIMO radar based on signal subspace reconstruction and matching[J]. Frontiers in Physics, 2023:11-15.
[26] MA J J, MA H, LIU H W, et al. A novel DOA estimation for low-elevation target method based on multiscattering center equivalent model[J]. IEEE Geoscience and Remote Sensing Letters, 2023,20. DOI: 10.1109/LGRS2023.3242977.
[27] ZHU Y, LIU L, WANG A. DOA estimation and capacity analysis for 2D active massive MIMO systems[C]// 2013 IEEE International Conference on Communications (ICC). IEEE, 2013:4630-4634.
[28] BLUNT S D, CHAN T, GERLACH K. Robust DOA estimation: The reiterative super-resolution (RISR) algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011,47(1):332-346.
[29] XU F, MORENCY M W, VOROBYOV S A. DOA estimation for transmit beamspace MIMO radar via tensor decomposition with Vandermonde factor matrix[J]. IEEE Transactions on Signal Processing, 2022,70:2901-2917.
[30] CABAZOS-MARÍN A R, ÁLVAREZ-BORREGO J. Automatic focus and fusion image algorithm using nonlinear correlation: Image quality evaluation[J]. Optik, 2018,64:224-242.
[31] ZHOU Y W, WANG Y L, KONG Y Y, et al. Multi-indicator image quality assessment of smartphone camera based on human subjective behavior and perception[C]// 2020 IEEE International Conference on Multimedia & Expo Workshops, IEEE, 2020. DOI:10.1109/ICMEW46912. 2020. 9105972.
[32] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986,34(3):276-280.
[33] ZHOU Z, LIANG J, DUAN S, et al. Research on autofocus recognition of the LAMOST fiber view camera system under front and back illumination[J]. Publications of the Astronomical Society of the Pacific, 2022,134(1032):025001.
[34] ZHU X X, BAMLER R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,50(1):247-258.