(1. School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; 2. Wuhan Qiaokou Maternal and Child Health Hospital, Wuhan 430205, China)
[1] 王灿,黄猛. 胎儿生长受限的超声诊断进展[J]. 国际妇产科学杂志, 2021,48(5):508-511.
[2] VERHEECKE M, CORTES C A, FINALET F J, et al. Genetic and microscopic assessment of the human chemotherapy-exposed placenta reveals possible pathways contributive to fetal growth restriction[J]. Placenta, 2018,64(4):61-70.
[3] LI X J, DING J Q, TANG J J, et al. Res2U-Net: A multi-scale channel attention network for retinal vessel segmentation[J]. Neural Computing & Applications, 2022,34(14):12001-12015.
[4] LUO L, CHEN D L, XUE D Y. Retinal blood vessels semantic segmentation method based on modified U-Net[C]// 2018 Chinese Control and Decision Conference(CCDC). IEEE, 2018:1892-1895.
[5] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
[6] 徐冬,蒋文娟. 基于卷积神经网络的肝脏肿瘤检测算法及应用研究[J]. 信息与电脑(理论版), 2020,32(15):67-69.
[7] 黄伟燃. 基于卷积神经网络的肝脏肿瘤检测算法及应用[D]. 广州:华南理工大学, 2018.
[8] 娄惊蛟. 基于卷积神经网络的医学图像分割算法研究与应用[D]. 济南:山东师范大学, 2020.
[9] 李花桃. 基于U-Net网络的肝脏及其肿瘤CT图像分割方法的研究[D]. 西安:西安科技大学, 2021.
[10] YU Q H, XIE L X, WANG Y, et al. Recurrent saliency transformation network: Incorporating multi-stage visual cues for small organ segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018. DOI:10.1109/CVPR.2018.00864.
[11] 王嘉瑶. 基于深度学习的胰腺CT图像自动分割研究[D]. 包头:内蒙古科技大学, 2020.
[12] 易三莉,王天伟,杨雪莲,等. 基于改进U-Net的肺野分割算法[J]. 激光与光电子学进展, 2022,59(2):175-183.
[13] 程立英,高宣爽,申海,等. 基于U-Net网络的肺部组织分割[J]. 沈阳师范大学学报(自然科学版), 2020,38(3):278-282.
[14] 宋瑶,刘俊. 改进U-Net的新冠肺炎图像分割方法[J]. 计算机工程与应用, 2021,57(19):243-251.
[15] 李姗姗. 基于U-Net的人脑MR图像配准方法研究[D]. 昆明:昆明理工大学, 2021.
[16] 姜峰. 深度学习在胎盘超声图像及皮肤镜图像识别中的研究[D]. 深圳:深圳大学, 2019.
[17] 余镇. 深度学习在胎儿超声图像与皮肤镜图像分类中的研究与应用[D]. 深圳:深圳大学, 2018.
[18] GUPTA L, SISODIA R S, PALLAVI V, et al. Segmentation of 2D fetal ultrasound images by exploiting context information using conditional random fields[C]// 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011:7219-7222.
[19] OGUZ I, YUSHKEVICH N, POUCH A, et al. Minimally interactive placenta segmentation from three-dimensional ultrasound images[J]. Journal of Medical Imaging, 2020,7(1):014004. DOI: 10.1117/1.JMI.7.1.014004.
[20] STEVENSON G N, COLLINS S L, DING J, et al. 3-D ultrasound segmentation of the placenta using the random walker algorithm: Reliability and agreement[J]. Ultrasound in Medicine & Biology, 2015,41(12):3182-3193.
[21] LOONEY P, STEVENSON G N, NICOLAIDES K H, et al. Automatic 3D ultrasound segmentation of the first trimester placenta using deep learning[C]// 2017 IEEE 14th International Symposium on Biomedical Imaging. IEEE, 2017. DOI:10.1109/ISBI.2017.7950519.
[22] HU R, SINGLA R, YAN R, et al. Automated placenta segmentation with a convolutional neural network weighted by acoustic shadow detection[C]// 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC). IEEE, 2019.DOI:10.1109/EMBC.2019.8857448.
[23] ZHANG Z X, LIU Q J, WANG Y H. Road extraction by deep residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018,15(5):749-753.
[24] 高广尚. 深度学习推荐模型中的注意力机制研究综述[J]. 计算机工程与应用, 2022,58(9):9-18.
[25] 陈朝一,许波,吴英,等. 医学图像处理中的注意力机制研究综述[J]. 计算机工程与应用, 2022,58(5):23-33.
[26] YANG Z X, ZHU L C, WU Y, et al. Gated channel transformation for visual recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2020. DOI:10.1109/CVPR42600.2020.01181.
[27] HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018. DOI:10.1109/CVPR.2018.00745.
[28] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2016. DOI:10.1109/CVPR.2016.90.
[29] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834-848.
[30] RUAN D S, WANG D Y, ZHENG Y, et al. Gaussian context transformer[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2021. DOI:10.1109/CVPR46437.2021.01488.
[31] QIN J H, HUANG Y J, WEN W S. Multi-scale feature fusion residual network for single image super-resolution[J]. Neurocomputing, 2020,379:334-342.