Computer and Modernization

Previous Articles     Next Articles

Classification Method of Motor Imagery EEG Signal Based on Improved CSP Algorithm

  

  1. (Department of Control Engineering, Academy of Armored Force Engineering, Beijing 100072, China)
  • Received:2017-05-08 Online:2017-11-21 Published:2017-11-21

Abstract: For the problem of low classification accuracy and poor real-time performance during the traditional common spatial patterns (CSP) algorithm for motor imagery EEG signal processing, a new analysis method of CSP EEG signal based on time space frequency domain is put forward. Firstly, the wavelet packet is used to decompose the original signal of EEG, the motor imagery EEG rhythm is extracted according to the frequency distribution of EEG signal, and the spatial features of EEG are extracted by improving CSP algorithm. Then, we introduce the time window to filter the EEG signals, and eliminate the influence of EEG fluctuation at the beginning and end of the motion imagery. Lastly, according to the characteristics of the physiological distribution of EEG signals in the brain cortex, the method based on spindle channel is used to process the EEG signal and analyze computational time of different algorithms and the classification results. The experimental results show that, the running time of the algorithm is 1.562 s, which is 67% shorter than the traditional method, and the average classification accuracy is up to 97.5% when the number of spindle channels is 29 and the time window is 2 s. In the meantime, the results show that the proposed method can effectively improve the classification accuracy and the real-time performance of motor imagery EEG.

Key words: brain-computer interface (BCI), motor imagery, common spatial patterns (CSP), spindle channel, time window

CLC Number: