计算机与现代化 ›› 2025, Vol. 0 ›› Issue (09): 97-103.doi: 10.3969/j.issn.1006-2475.2025.09.014

• 数据库与数据挖掘 • 上一篇    下一篇

基于双重注意力机制的CNN-BiLSTM和LightGBM股票预测

  


  1. (广东工业大学计算机学院,广东 广州 510006)
  • 出版日期:2025-09-24 发布日期:2025-09-24
  • 作者简介:作者简介:刘成(1997—),男,湖北荆州人,硕士研究生,研究方向:深度学习,E-mail: 3467871334@qq.com; 通信作者:冯广(1973—),男,广东云浮人,教授级高级实验师,博士,研究方向:网络控制,机器学习,大数据,E-mail: von@gdut.edu.cn。
  • 基金资助:
        基金项目:国家自然科学基金资助项目(62237001)
        

CNN-BiLSTM and LightGBM Stock Prediction Based on Dual Attention Mechanism


  1. (School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China)
  • Online:2025-09-24 Published:2025-09-24

摘要:
摘要:股票市场对于经济的发展至关重要,投资者根据它的剧烈波动性来精准地预测股票价格的变化,能有效降低投资风险,获得更高的收益。由于传统的时间序列模型如ARIMA在处理非线性问题时存在局限,其预测效果在股票市场中往往不尽如人意。本文提出一种创新的混合算法,融合双重注意力机制的CNN-BiLSTM与LightGBM技术,借助神经网络的强大非线性学习能力,实现股市波动的高效精准预测。在具体实施上,股票数据首先通过ARIMA模型进行预处理,随后采用卷积神经网络结合注意力机制,构建特征注意力模块,以自适应方式提取股票数据中的关键特征。接着,融合双向长短期记忆网络与注意力机制,构建时间注意力模块,对股票价格的未来趋势进行初步预测。最后,为了进一步优化预测准确性,模型引入LightGBM构建误差修正模块,精细化调整初步预测结果。实验表明,本文提出的模型不仅能够提升预测准确性,而且能够为投资者和机构提供强有力的决策支持,从而使他们能够更加敏锐地发掘市场机遇,达到最大化收益的目的。


关键词: 关键词:双向长短期记忆网络; LightGBM; 注意力机制; 卷积神经网络; 股票预测 ,

Abstract:
Abstract: The stock market is crucial for economic development, according to its intense volatility, investors can effectively reduce investment risks and achieve higher returns if they can predict changes in stock prices more accurately. Due to the limitations of traditional time series models such as ARIMA in dealing with nonlinear problems, its forecasting effect is often unsatisfactory in the stock market. This paper proposes an innovative hybrid algorithm, which combines CNN-BiLSTM and LightGBM technology with dual attention mechanism, and makes use of the powerful nonlinear learning ability of neural network to achieve efficient and accurate prediction of stock market volatility. In practice, the stock data is preprocessed by ARIMA model, and then convolutional neural network combined with attention mechanism is used to construct feature attention module and extracts the key features from the stock data in an adaptive way. Then, by integrating bidirectional long short-term memory network and the attention mechanism, a temporal attention module is constructed to make a preliminary prediction of the future trend of stock prices. Finally, in order to further optimize the prediction accuracy, the model is introduced LightGBM to construct an error correction module to finely adjust the preliminary prediction results. The experiments show that the proposed model can not only improve the prediction accuracy, but also provide strong decision support for investors and institutions, so that they can more keenly explore market opportunities and achieve the goal of maximizing profits.

Key words: Key words: bidirectional long short-term memory network, LightGBM, attention mechanism, convolutional neural network, stock prediction

中图分类号: