计算机与现代化 ›› 2025, Vol. 0 ›› Issue (06): 101-105.doi: 10.3969/j.issn.1006-2475.2025.06.016

• 信息系统 • 上一篇    下一篇

基于图注意力网络的模拟电路结构标注


  

  1. (上海电力大学电子信息与工程学院,上海 201306)
  • 出版日期:2025-06-30 发布日期:2025-07-01
  • 作者简介: 作者简介:李鑫朋(1999—),男,安徽阜阳人,硕士研究生,研究方向:电子设计自动化方向,E-mail: lxp987409171@163.com;通信作者:仝明磊(1976—),男,山东菏泽人,副教授,博士,研究方向:人工智能辅助设计,计算机视觉,E-mail: tongminglei@shiep.edu.cn。

Annotation of Analog Circuit Structures via Graph Attention Networks

  1. (College of Electronic Information and Engineering, Shanghai University of Electric Power, Shanghai 201306, China)
  • Online:2025-06-30 Published:2025-07-01

摘要: 摘要:电路结构的自动化标注能够生成层次化的模拟电路网络结构表达,从而推动模拟电路设计自动化任务的发展。本文利用一种基于图注意力网络的图模型,将电路网表转换为图结构,提出一种特征提取策略,学习并预测网表中节点组成的电路结构,同时提出一种快速生成大量SPICE电路网表的方法,为图模型的训练提供充足的数据。实验分别对比了图卷积网络、图同构网络以及GraphSAGE在同一数据集上的识别效果,结果显示本文模型在准确率、精确度和平均精确率3个指标上均优于其他模型,分别达到了90.9%、91.6%和91.9%。表明了本文模型在捕捉电路连接关系方面的优越性,尤其是在处理复杂电路图时的有效性。


关键词: 关键词:自动化标注, 图注意力网络, 电路结构, 特征提取 ,

Abstract:
Abstract:Automated annotation of circuit structures can generate hierarchical representations of analog circuit networks, thereby advancing the development of automated analog circuit design tasks. This paper introduces a graph attention network-based model that transforms circuit netlists into graph structures, proposes a feature extraction strategy to learn and predict the circuit structures composed of nodes in the netlists, and presents a method for quickly generating a large number of SPICE circuit netlists to provide ample data for training the graph model. Experiments compared the recognition effects of graph convolutional networks, graph isomorphism networks, and GraphSAGE on the same dataset. The results show that the model outperforms the other models in accuracy, precision, and mean average precision, achieving 90.9%, 91.6%, and 91.9%, respectively. These results demonstrate the superiority of the model in capturing circuit connections, especially in terms of its effectiveness in processing complex circuit diagrams.

Key words: Key words: automated annotation, graph attention networks, circuit structure, feature extraction

中图分类号: