计算机与现代化 ›› 2025, Vol. 0 ›› Issue (04): 6-11.doi: 10.3969/j.issn.1006-2475.2025.04.002
摘要: 电力负荷预测的精度对节能减排至关重要,更高的精度可以使电力公司做出更合理的规划,提高经济效益。虽然基于Transformer架构改进的Autoformer已经在序列预测任务中取得了不错的结果,但在提取时序特征时没有充分考虑到时间的因果关系,且注意力层中存在过多冗余信息导致模型精度下降和内存浪费。为了解决这些问题,本文提出一种时间卷积网络(TCN)和改进的轻量Autoformer模型相结合的电力负荷预测方法。首先,在Autoformer的编码器中引入时间卷积网络,使得编码器具有更大的感受野并充分考虑样本的因果关系,然后在自相关注意力层之间增加蒸馏机制,减少模型的参数量。最后,在5个公共数据集上的实验结果表明,结合TCN的轻量Autoformer与原始模型相比,MSE指标和MAE指标分别降低了8.95%至32.40%和4.91%至15.51%,且预测效果显著优于其他4种主流方法,显示了其出色的性能。
中图分类号: