计算机与现代化 ›› 2025, Vol. 0 ›› Issue (02): 33-43.doi: 10.3969/j.issn.1006-2475.2025.02.05
出版日期:
2025-02-28
发布日期:
2025-02-28
Online:
2025-02-28
Published:
2025-02-28
摘要: 特征选择作为数据预处理的主要技术之一,可有效识别关键特征,从而降维以有效应对“维度诅咒”问题。特征选择是典型的NP-hard问题,智能优化算法因其卓效的全局搜索能力被广泛应用于特征选择。首先,本文整理了特征重要度评估方法和参数更新方法,前者用于判断特征的相关性与冗余性,后者用于算法的参数更新,二者均可用于面向特征选择的智能优化算法的各个核心步骤。然后,介绍了算法初始化、种群搜索、目标函数设计3个核心步骤的策略设计。从决策空间初始化和种群初始化2个方面归纳了初始化策略,并分析不同策略优势与局限;从种群数量出发,对单种群和多种群的搜索策略进行细致划分;根据目标函数应用的指标不同,分类总结目标函数设计。最后,讨论了面向特征选择的智能优化算法未来研究方向。
中图分类号:
齐浩淳. 面向特征选择的智能优化算法综述[J]. 计算机与现代化, 2025, 0(02): 33-43.
QI Haochun. Survey on Intelligent Optimization Algorithm for Feature Selection[J]. Computer and Modernization, 2025, 0(02): 33-43.
[1] Preeti, DEEP K. A random walk Grey wolf optimizer based on dispersion factor for feature selection on chronic disease prediction[J]. Expert Systems with Applications, 2022,206. DOI: 10.1016/j.eswa.2022.117864. [2] AL-YASEEN W L, IDREES A K, ALMASOUDY F H. Wrapper feature selection method based differential evolution and extreme learning machine for intrusion detection system[J]. Pattern Recognition, 2022,132. DOI: 10.1016/j.patcog.2022.108912. [3] LABANI M, MORADI P, JALILI M. A multi-objective genetic algorithm for text feature selection using the relative discriminative criterion[J]. Expert Systems with Applications, 2020, 149. DOI: 10.1016/j.eswa.2020.113276. [4] GUAN B X, ZHAO Y H, YIN Y, et al. A differential evolution based feature combination selection algorithm for high-dimensional data[J]. Information Sciences, 2021,547:870-886. [5] CHENG F, CHU F X, XU Y, et al. A steering-matrix-based multiobjective evolutionary algorithm for high-dimensional feature selection[J]. IEEE Transactions on Cybernetics, 2022,52(9):9695-9708. [6] SONG X F, ZHANG Y, GUO Y N, et al. Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(5): 882-895. [7] WANG Q J, YUE C F, LI X Q, et al. Enhancing robustness of monthly streamflow forecasting model using embedded-feature selection algorithm based on improved gray wolf optimizer[J]. Journal of Hydrology, 2023,617. DOI: 10.1016/j.jhydrol.2022.128995. [8] NGUYEN B H, XUE B, ZHANG M J. A survey on swarm intelligence approaches to feature selection in data mining[J]. Swarm and Evolutionary Computation, 2020,54. DOI: 10.1016/j.swevo.2020.100663. [9] ROSTAMI M, BERAHMAND K, NASIRI E, et al. Review of swarm intelligence-based feature selection methods[J]. Engineering Applications of Artificial Intelligence, 2021, 100. DOI: 10.1016/j.engappai.2021.104210. [10] XUE B, ZHANG M J, BROWNE W N, et al. A survey on evolutionary computation approaches to feature selection[J]. IEEE Transactions on Evolutionary Computation, 2016,20(4):606-626. [11] DOKEROGLU T, DENIZ A, KIZILOZ H E. A comprehensive survey on recent metaheuristics for feature selection[J]. Neurocomputing, 2022,494:269-296. [12] ALOMARI O A, MAKHADMEH S N, AL-BETAR M A, et al. Gene selection for microarray data classification based on Gray Wolf Optimizer enhanced with TRIZ-inspired operators[J]. Knowledge-Based Systems, 2021,223. DOI: 10.1016/j.knosys.2021.107034. [13] SALESI S, COSMA G, MAVROVOUNIOTIS M. TAGA: Tabu Asexual Genetic Algorithm embedded in a filter/filter feature selection approach for high-dimensional data[J]. Information Sciences, 2021,565:105-127. [14] LAI C M, CHIU C C, SHIH Y C, et al. A hybrid feature selection algorithm using simplified swarm optimization for body fat prediction[J]. Computer Methods and Programs in Biomedicine, 2022,226:107183. DOI: 10.1016/j.cmpb.2022.107183. [15] SHUNMUGAPRIYA P, KANMANI S. A hybrid algorithm using ant and bee colony optimization for feature selection and classification (AC-ABC Hybrid)[J]. Swarm and Evolutionary Computation, 2017,36:27-36. [16] GHIMATGAR H, KAZEMI K, HELFROUSH M S, et al. An improved feature selection algorithm based on graph clustering and ant colony optimization[J]. Knowledge-Based Systems, 2018,159:270-285. [17] LI L J, XUAN M L, LIN Q Z, et al. An evolutionary multitasking algorithm With multiple filtering for high-dimensional feature selection[J]. IEEE Transactions on Evolutionary Computation, 2023,27(4):802-816. [18] MANBARI Z, AKHLAGHIANTAB F, SALAVATI C. Hybrid fast unsupervised feature selection for high-dimensional data[J]. Expert Systems with Applications, 2019,124:97-118. [19] 杨秋良,王钰,杨杏丽,等. 基于互信息F统计量特征选择技术的地基气象云图分类[J]. 计算机与现代化. 2021(2):18-23. [20] 余紫康,董红斌. 具有混合策略的樽海鞘群特征选择算法[J]. 智能系统学报. 2023,19(3):757-765. [21] 许召召,申德荣,聂铁铮,等. 融合信息增益比和遗传算法的混合式特征选择算法[J]. 软件学报. 2022,33(3):1128-1140. [22] HU Z Y, BAO Y K, XIONG T, et al. Hybrid filter–wrapper feature selection for short-term load forecasting[J]. Engineering Applications of Artificial Intelligence, 2015,40:17-27. [23] SONG X F, ZHANG Y, GONG D W, et al. Feature selection using bare-bones particle swarm optimization with mutual information[J]. Pattern Recognition, 2021,112. DOI: 10.1016/j.patcog.2020.107804. [24] LI X Q, REN J. MICQ-IPSO: An effective two-stage hybrid feature selection algorithm for high-dimensional data[J]. Neurocomputing, 2022,501:328-342. [25] BINSAEEDAN W, ALRAMLAWI S. CS-BPSO: Hybrid feature selection based on chi-square and binary PSO algorithm for Arabic email authorship analysis[J]. Knowledge-Based Systems, 2021,227. DOI: 10.1016/j.knosys.2021. 107224. [26] XIE W D, WANG L J, YU K, et al. Improved multi-layer binary firefly algorithm for optimizing feature selection and classification of microarray data[J]. Biomedical Signal Processing and Control, 2023, 79. DOI: 10.1016/j.bspc.2022. 104080. [27] DEVI PRIYA R, SIVARAJ R, ANITHA N, et al. Tri-staged feature selection in multi-class heterogeneous datasets using memetic algorithm and cuckoo search optimization[J]. Expert Systems with Applications, 2022,209. DOI: 10.1016/j.eswa.2022.118286. [28] HASSONAH M A, AL-SAYYED R, RODAN A, et al. An efficient hybrid filter and evolutionary wrapper approach for sentiment analysis of various topics on Twitter[J]. Knowledge-Based Systems, 2020,192. DOI: 10.1016/j.knosys.2019.105353. [29] OUADFEL S, ABD ELAZIZ M. Efficient high-dimension feature selection based on enhanced equilibrium optimizer[J]. Expert Systems with Applications, 2022,187. DOI: 10.1016/j.eswa.2021.115882. [30] 侯钰哲,李舜酩,龚思琪,等. 滚动轴承故障特征选择的Filter与改进灰狼优化混合算法[J]. 计算机集成制造系统. 2023,29(5):1452-1461. [31] ZHOU Y, ZHANG W J, KANG J H, et al. A problem-specific non-dominated sorting genetic algorithm for supervised feature selection[J]. Information Sciences, 2021,547:841-859. [32] 孙林,刘梦含,薛占熬. 结合人工蜂群与K-means聚类的特征选择[J]. 计算机科学与探索. 2024,18(1):93-110. [33] 刘振超,苑迎春,王克俭,等. 融合特征权重与改进粒子群优化的特征选择算法[J]. 计算机工程与科学. 2024,46(2):282-291. [34] HOUSSEIN E H, OLIVA D, ÇELIK E, et al. Boosted sooty tern optimization algorithm for global optimization and feature selection[J]. Expert Systems with Applications, 2023,213. DOI: 10.1016/j.eswa.2022.119015. [35] YILDIRIM S, KAYA Y, KILIÇ F. A modified feature selection method based on metaheuristic algorithms for speech emotion recognition[J]. Applied Acoustics, 2021, 173. DOI: 10.1016/j.apacoust.2020.107721. [36] 叶雨彬,韦文山. 基于多策略融合鹈鹕优化算法的特征选择方法[J]. 微电子学与计算机. 2023,40(12):19-25. [37] VOMMI A M, BATTULA T K. A hybrid filter-wrapper feature selection using fuzzy KNN based on Bonferroni mean for medical datasets classification: A COVID-19 case study[J]. Expert Systems with Applications, 2023,218. DOI: 10.1016/j.eswa.2023.119612. [38] KHOSRAVI H, AMIRI B, YAZDANJUE N, et al. An improved group teaching optimization algorithm based on local search and chaotic map for feature selection in high-dimensional data[J]. Expert Systems with Applications, 2022,204. DOI: 10.1016/j.eswa.2022.117493. [39] HU B, DAI Y Q, SU Y, et al. Feature selection for optimized high-dimensional biomedical data using an improved shuffled frog leaping algorithm[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018,15(6):1765-1773. [40] ZHAO Y X, DONG J W, LI X B, et al. A binary dandelion algorithm using seeding and chaos population strategies for feature selection[J]. Applied Soft Computing, 2022,125. DOI: 10.1016/j.asoc.2022.109166. [41] 赵小强,强睿儒. 基于改进的哈里斯鹰优化算法的特征选择[J]. 兰州理工大学学报. 2023,49(5):93-101. [42] 申晋祥,鲍美英,张景安,等. 基于改进樽海鞘群算法的特征选择方法[J]. 计算机工程与设计. 2023,44(9):2714-2721. [43] LI Z. A local opposition-learning golden-sine grey wolf optimization algorithm for feature selection in data classification[J]. Applied Soft Computing, 2023,142. DOI: 10.1016/j.asoc.2023.110319. [44] 孙林,刘梦含. 基于自适应布谷鸟优化特征选择的K-means聚类[J]. 计算机应用. 2024,44(3):831-841. [45] YANG X S, DEB S. Cuckoo search via levy flights[J]. arXiv preprint arXiv:1003.1594, 2010. [46] HALL M A. Correlation-based feature selection for machine learning[C]// Proceedings of the 17th International Conference on Machine Learning(ICML-2000). Morgan Kaufmann Publishers Inc., 2000. [47] YU L, LIU H. Efficient feature selection via analysis of relevance and redundancy[J]. The Journal of Machine Learning Research, 2004,5:1205-1224. [48] ZARISFI KERMANI F, ESLAMI E, SADEGHI F. Global filter-wrapper method based on class-dependent correlation for text classification[J]. Engineering Applications of Artificial Intelligence, 2019,85:619-633. [49] JAIN I, JAIN V K, JAIN R. Correlation feature selection based improved-Binary Particle Swarm Optimization for gene selection and cancer classification[J]. Applied Soft Computing, 2018,62:203-215. [50] GHOSH M, ADHIKARY S, GHOSH K K, et al. Genetic algorithm based cancerous gene identification from microarray data using ensemble of filter methods[J]. Medical & Biological Engineering & Computing, 2019,57:159-176. [51] ROUHI A, NEZAMABADI-POUR H. A hybrid method for dimensionality reduction in microarray data based on advanced binary ant colony algorithm[C]// 2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC). IEEE, 2016:70-75. [52] COLETO-ALCUDIA V, VEGA-RODRÍGUEZ M A. Artificial Bee Colony algorithm based on Dominance (ABCD) for a hybrid gene selection method[J]. Knowledge-Based Systems, 2020, 205. DOI: 10.1016/j.knosys.2020.106323. [53] CHAUDHURI A, SAHU T P. A hybrid feature selection method based on Binary Jaya algorithm for micro-array data classification[J]. Computers & Electrical Engineering, 2021, 90. DOI: 10.1016/j.compeleceng.2020.106963. [54] ZHU Y B, LI W S, LI T. A hybrid Artificial Immune optimization for high-dimensional feature selection[J]. Knowledge-Based Systems, 2023,260. DOI: 10.1016/j.knosys.2022.110111. [55] CHEN K, XUE B, ZHANG M J, et al. An evolutionary multitasking-based feature selection method for high-dimensional classification[J]. IEEE Transactions on Cybernetics, 2022,52(7):7172-7186. [56] LIU Z Y, CHANG B, CHENG F. An interactive filter-wrapper multi-objective evolutionary algorithm for feature selection[J]. Swarm and Evolutionary Computation, 2021, 65. DOI: 10.1016/j.swevo.2021.100925. [57] SONG X F, ZHANG Y, GONG D W, et al. A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data[J]. IEEE Transactions on Cybernetics, 2022,52(9):9573-9586. [58] P S A B, ANNAVARAPU C S R, DARA S. Clustering-based hybrid feature selection approach for high dimensional microarray data[J]. Chemometrics and Intelligent Laboratory Systems, 2021,213. DOI: 10.1016/j.chemolab.2021.104305. [59] WANG X H, ZHANG Y, SUN X Y, et al. Multi-objective feature selection based on artificial bee colony: An acceleration approach with variable sample size[J]. Applied Soft Computing, 2020,88. DOI: 10.1016/j.asoc.2019.106041. [60] LI W W, CHAI Z Y, TANG Z J. A decomposition-based multi-objective immune algorithm for feature selection in learning to rank[J]. Knowledge-Based Systems, 2021,234. DOI: 10.1016/j.knosys.2021.107577. [61] TARKHANEH O, NGUYEN T T, MAZAHERI S. A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm[J]. Information Sciences, 2021,565:278-305. [62] RAJAMOHANA S P, UMAMAHESWARI K. Hybrid approach of improved binary particle swarm optimization and shuffled frog leaping for feature selection[J]. Computers & Electrical Engineering, 2018,67:497-508. [63] ABD ELAZIZ M, ABU-DONIA H M, HOSNY R A, et al. Improved evolutionary-based feature selection technique using extension of knowledge based on the rough approximations[J]. Information Sciences, 2022,594:76-94. [64] HANCER E, XUE B, ZHANG M J. Fuzzy filter cost-sensitive feature selection with differential evolution[J]. Knowledge-Based Systems, 2022, 241. DOI: 10.1016/j.knosys.2022.108259. [65] ABBASI M S, AL-SAHAF H, MANSOORI M, et al. Behavior-based ransomware classification: A particle swarm optimization wrapper-based approach for feature selection[J]. Applied Soft Computing, 2022, 121. DOI: 10.1016/j.asoc.2022.108744. [66] APOLLONI J, LEGUIZAMÓN G, ALBA E. Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments[J]. Applied Soft Computing, 2016,38:922-932. [67] KILIÇ F, KAYA Y, YILDIRIM S. A novel multi population based particle swarm optimization for feature selection[J]. Knowledge-Based Systems, 2021,219. DOI: 10.1016 /j.knosys.2021.106894. [68] 贾鹤鸣,姜子超,李瑶,等. 基于改进斑点鬣狗优化算法的同步优化特征选择[J]. 计算机应用. 2021,41(5):1290-1298. [69] ZHANG Y, WANG Y H, GONG D W, et al. Clustering-guided particle swarm feature selection algorithm for high-dimensional imbalanced data with missing values[J]. IEEE Transactions on Evolutionary Computation, 2022,26(4):616-630. [70] TUBISHAT M, IDRIS N, SHUIB L, et al. Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection[J]. Expert Systems with Applications, 2020,145. DOI: 10.1016/j.eswa.2019.113122. [71] 杨舒云,刘宏志,李海生. 融合蝠鲼旋风式觅食策略的灰狼特征选择算法[J]. 计算机仿真. 2023,40(9):375-380. [72] PAN H Y, CHEN S D, XIONG H L. A high-dimensional feature selection method based on modified Gray Wolf Optimization[J]. Applied Soft Computing, 2023,135. DOI: 10.1016/j.asoc.2023.110031. [73] 张翠军,陈贝贝,周冲,等. 基于多目标骨架粒子群优化的特征选择算法[J]. 计算机应用. 2018, 38(11): 3156-3160. [74] DAS A K, SENGUPTA S, BHATTACHARYYA S. A group incremental feature selection for classification using rough set theory based genetic algorithm[J]. Applied Soft Computing, 2018,65:400-411. [75] ZHOU J, HUA Z S. A correlation guided genetic algorithm and its application to feature selection[J]. Applied Soft Computing, 2022,123. DOI: 10.1016/j.asoc.2022.108964. [76] GHAMISI P, BENEDIKTSSON J A. Feature selection based on hybridization of genetic algorithm and particle swarm optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2015,12(2):309-313. [77] XU H, XUE B, ZHANG M J. A duplication analysis-based evolutionary algorithm for biobjective feature selection[J]. IEEE Transactions on Evolutionary Computation, 2021,25(2):205-218. [78] LI A D, XUE B, ZHANG M J. Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection[J]. Information Sciences, 2020,523:245-265. [79] KHALID A M, HAMZA H M, MIRJALILI S, et al. BCOVIDOA: A novel binary coronavirus disease optimization algorithm for feature selection[J]. Knowledge-Based Systems, 2022,248. DOI: 10.1016/j.knosys.2022.108789. [80] ZHANG R, ZHANG Z Q, WANG D, et al. Feature selection with multi-objective genetic algorithm based on a hybrid filter and the symmetrical complementary coefficient[J]. Applied Intelligence, 2021,51(6):3899-3916. [81] WANG J X, YE M C, XIONG F C, et al. Cross-scene hyperspectral feature selection via hybrid whale optimization algorithm with simulated annealing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14:2473-2483. [82] XUE Y, CAI X, NERI F. A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification[J]. Applied Soft Computing, 2022,127. DOI: 10.1016/j.asoc.2022.109420. [83] XUE Y, ZHU H K, LIANG J Y, et al. Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification[J]. Knowledge-Based Systems, 2021,227. DOI: 10.1016/j.knosys.2021.107218. [84] WANG Z C, LI M Q, LI J Z. A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure[J]. Information Sciences, 2015,307:73-88. [85] CHENG F, CUI J J, WANG Q J, et al. A variable granularity search-based multiobjective feature selection algorithm for high-dimensional data classification[J]. IEEE Transactions on Evolutionary Computation, 2023,27(2):266-280. [86] PAN J S, LIU N X, CHU S C. A competitive mechanism based multi-objective differential evolution algorithm and its application in feature selection[J]. Knowledge-Based Systems, 2022,245. DOI: 10.1016/j.knosys.2022.108582. [87] TAN P, WANG X, WANG Y. Dimensionality reduction in evolutionary algorithms-based feature selection for motor imagery brain-computer interface[J]. Swarm and Evolutionary Computation, 2020,52. DOI: 10.1016/j.swevo.2019. 100597. [88] MORADI P, GHOLAMPOUR M. A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy[J]. Applied Soft Computing, 2016,43:117-130. [89] ZHANG Y, LI H G, WANG Q, et al. A filter-based bare-bone particle swarm optimization algorithm for unsupervised feature selection[J]. Applied Intelligence, 2019,49(8):2889-2898. [90] JIAO R W, XUE B, ZHANG M J. Solving multi-objective feature selection problems in classification via problem reformulation and duplication handling[J]. IEEE Transactions on Evolutionary Computation, 2024,28(4):846-860. [91] ASGHARI VARZANEH Z, HOSSEIN S, EBRAHIMI MOOD S, et al. A new hybrid feature selection based on Improved Equilibrium Optimization[J]. Chemometrics and Intelligent Laboratory Systems, 2022,228. DOI: 10.1016/j.chemolab.2022.104618. [92] HAMMOURI A I, MAFARJA M, AL-BETAR M A, et al. An improved Dragonfly Algorithm for feature selection[J]. Knowledge-Based Systems, 2020,203. DOI: 10.1016/j.knosys.2020.106131. [93] SUN L, KONG X L, XU J C, et al. A hybrid gene selection method based on ReliefF and Ant colony optimization algorithm for tumor classification[J]. Scientific Reports, 2019,9(1). DOI: 10.1038/s41598-019-45223-x. [94] LIU Q, LIU M X, WANG F D, et al. A dynamic stochastic search algorithm for high-dimensional optimization problems and its application to feature selection[J]. Knowledge-Based Systems, 2022,244. DOI: 10.1016/j.knosys.2022.108517. [95] LONG W, XU M, JIAO J J, et al. A velocity-based butterfly optimization algorithm for high-dimensional optimization and feature selection[J]. Expert Systems with Applications, 2022,201. DOI: 10.1016/j.eswa.2022.117217. [96] SHUKLA A K, SINGH P, VARDHAN M. Gene selection for cancer types classification using novel hybrid metaheuristics approach[J]. Swarm and Evolutionary Computation, 2020,54. DOI: 10.1016/j.swevo.2020.100661. [97] PURUSHOTHAMAN R, RAJAGOPALAN S P, DHANDA PANI G. Hybridizing Gray Wolf Optimization (GWO) with Grasshopper Optimization Algorithm (GOA) for text feature selection and clustering[J]. Applied Soft Computing, 2020,96. DOI: 10.1016/j.asoc.2020.106651. [98] DHAL P, AZAD C. A multi-objective feature selection method using Newton’s law based PSO with GWO[J]. Applied Soft Computing, 2021,107. DOI: 10.1016/j.asoc.2021. 107394. [99] 孙林,赵婧,徐久成,等. 基于邻域粗糙集和帝王蝶优化的特征选择算法[J]. 计算机应用. 2022, 42(5): 1355-1366. [100]AMINI F, HU G P. A two-layer feature selection method using Genetic Algorithm and Elastic Net[J]. Expert Systems with Applications, 2021,166. DOI: 10.1016/j.eswa. 2020.114072. [101]邓秀勤,李文洲,武继刚,等. 融合Shapley值和粒子群优化算法的混合特征选择算法[J]. 计算机应用. 2018, 38(5): 1245-1249. [102]HU P, PAN J S, CHU S C, et al. Multi-surrogate assisted binary particle swarm optimization algorithm and its application for feature selection[J]. Applied Soft Computing, 2022,121. DOI: 10.1016/j.asoc.2022.108736. [103]LIU S L, WANG H D, PENG W, et al. A surrogate-assisted evolutionary feature selection algorithm with parallel random grouping for high-dimensional classification[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(5): 1087-1101. [104]KUNHARE N, TIWARI R, DHAR J. Intrusion detection system using hybrid classifiers with meta-heuristic algorithms for the optimization and feature selection by genetic algorithm[J]. Computers and Electrical Engineering, 2022,103. DOI: 10.1016/j.compeleceng.2022.108383. [105]MOSLEHI F, HAERI A. A novel hybrid wrapper–filter approach based on genetic algorithm, particle swarm optimization for feature subset selection[J]. Journal of Ambient Intelligence and Humanized Computing, 2020,11(3):1105-1127. [106]WAN Y C, WANG M W, YE Z W, et al. A feature selection method based on modified binary coded ant colony optimization algorithm[J]. Applied Soft Computing, 2016,49:248-258. [107]张健,张博. 基于生物入侵的特征选择算法[J]. 计算机工程. 2024,50(9):46-53. [108]高慧敏,王云鹤,卞闯,等. 基于混合进化算法的特征选择方法研究[J]. 电子学报. 2023, 51(6): 1619-1636. [109]LIANG J W, MA M D. FS-MOEA: A novel feature selection algorithm for IDSs in vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(1):368-382. [110]WANG Z Q, GAO S C, ZHOU M C, et al. Information-theory-based nondominated sorting ant colony optimization for multiobjective feature selection in classification[J]. IEEE Transactions on Cybernetics, 2023,53(8):5276-5289. [111]张玉琴,张建亮,冯向东. 基于改进智能优化算法的数据特征选择方法[J]. 传感器与微系统. 2023,42(6):154-157. [112]WANG Y T, WANG J D, LIAO H, et al. Unsupervised feature selection based on Markov blanket and particle swarm optimization[J]. Journal of systems engineering and electronics, 2017, 28(1): 151-161. [113]MA J B, GAO X Y. A filter-based feature construction and feature selection approach for classification using Genetic Programming[J]. Knowledge-Based Systems, 2020,196. DOI: 10.1016/j.knosys.2020.105806. [114]MOLDOVAN D, SLOWIK A. Energy consumption prediction of appliances using machine learning and multi-objective binary grey wolf optimization for feature selection[J]. Applied Soft Computing, 2021,111. DOI: 10.1016/j.asoc.2021.107745. [115]李忠兵,蒋川东,梁海波,等. 粗精选策略二进制灰狼优化算法用于红外光谱特征选择[J]. 光谱学与光谱分析. 2023,43(10):3067-3074. [116]GOT A, MOUSSAOUI A, ZOUACHE D. Hybrid filter-wrapper feature selection using whale optimization algorithm: A multi-objective approach[J]. Expert Systems with Applications, 2021,183. DOI: 10.1016/j.eswa.2021. 115312. [117]MA W P, ZHOU X B, ZHU H, et al. A two-stage hybrid ant colony optimization for high-dimensional feature selection[J]. Pattern Recognition, 2021,116. DOI: 10.1016/j.patcog.2021.107933. [118]SADEGHIAN Z, AKBARI E, NEMATZADEH H. A hybrid feature selection method based on information theory and binary butterfly optimization algorithm[J]. Engineering Applications of Artificial Intelligence, 2021,97. DOI: 10.1016/j.engappai.2020.104079. [119]WANG P, XUE B, LIANG J, et al. Differential evolution-based feature selection: A niching-based multiobjective approach[J]. IEEE Transactions on Evolutionary Computation, 2023,27(2):296-310. [120]廉杰,姚鑫,李占山. 用于特征选择的乌鸦搜索算法的研究与改进[J]. 软件学报. 2022,33(11):3903-3916. [121]于振华,刘争气,刘颖,等. 基于自适应混合粒子群优化的软件缺陷预测特征选择方法[J]. 计算机应用. 2023,43(4):1206-1213. [122]XUE Y, ZHU H K, NERI F. A feature selection approach based on NSGA-II with ReliefF[J]. Applied Soft Computing, 2023,134. DOI: 10.1016/j.asoc.2023.109987. [123]ARAM K Y, LAM S S, KHASAWNEH M T. Cost-sensitive max-margin feature selection for SVM using alternated sorting method genetic algorithm[J]. Knowledge-Based Systems, 2023,267. DOI: 10.1016/j.knosys.2023.110421. |
[1] | 姚洪曼,秦亮曦,胡 盼. 基于改进搜索策略和混沌机制的人工蜂群算法[J]. 计算机与现代化, 2016, 0(6): 79-84,90. |
[2] | 聂建华,黄 敏. 基于H.264的改进阈值的可变自适应十字搜索算法[J]. 计算机与现代化, 2014, 0(1): 86-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||