计算机与现代化 ›› 2024, Vol. 0 ›› Issue (10): 55-60.doi: 10.3969/j.issn.1006-2475.2024.10.009

• 算法设计与分析 • 上一篇    下一篇

基于领域自适应的水下图像增强算法


中图分类号:      文献标志码:A      DOI:



Abstract:
Key words: 

  

  1. (陕西科技大学电子信息与人工智能学院,陕西 西安 710021)
  • 出版日期:2024-10-29 发布日期:2024-10-30
  • 基金资助:
    国家自然科学基金资助项目(62031021)

Domain Adaption-based Underwater Image Enhancement Algorithm

  1. (School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi’an 710021, China)
  • Online:2024-10-29 Published:2024-10-30

摘要: 水下图像增强是完成水下任务的关键技术。针对水下图像存在的颜色失真、图像模糊的问题,本文设计一种基于领域自适应的水下图像增强算法(Underwater Domain Adaptation Network, UDA Net),实现无监督条件下水下图像的有效增强,显著改善原始水下图像的清晰度。该算法基于U-Net网络框架,利用卷积神经网络和多头注意力机制进行特征提取,引入对抗学习思想,在领域特征提取模块与输出模块中加入判别网络,同时优化源域特征增强损失、特征对齐损失以及输出对齐损失,保证源域到目标域的风格迁移与特征对齐,实现水下增强效果。此外,利用公开的水下数据集EUVP、UIEB以及UFO-120进行实验验证,并与前沿的增强算法进行对比实验,实验结果均表明了本文UDA Net算法的有效性,并在水下图像增强任务上具有良好的应用前景。

关键词: 水下图像增强, 风格迁移, 对抗学习, 损失函数

Abstract: Underwater image enhancement is a key technology for underwater missions. Aiming at the problems of color distortion and image blurring in underwater images, this paper designs an underwater domain adaptation network (UDA Net) based on the domain adaptive method to achieve effective enhancement of underwater images under unsupervised conditions. The sharpness of the original underwater images is significantly improved. Based on U-Net network framework, the algorithm uses convolutional neural network and multi-head attention mechanism for feature extraction, introduces adversarial learning idea, and adds discrimination network to domain feature extraction module and output module. Meanwhile, it optimizes feature enhancement loss, feature alignment loss and output alignment loss in the source domain to ensure style transfer and feature alignment from the source domain to the target domain, achieving underwater enhancement. In addition, the public underwater data sets EUVP, UIEB and UFO-120 are used for experimental verification, and the experimental results are compared with cutting-edge enhancement algorithms. The effectiveness of UDA Net algorithm is proved, and it has a good application prospect in underwater image enhancement tasks.

Key words:  ,  , underwater image enhancement; style transfer; adversarial learning; loss function

中图分类号: