计算机与现代化 ›› 2024, Vol. 0 ›› Issue (08): 43-48.doi: 10.3969/j.issn.1006-2475.2024.08.008
摘要: 针对智慧运维系统在维护机房安全时难以稳定检测机房工作人员的行为,导致出现安全隐患的问题,提出一种改进YOLOv8的行为检测算法。首先,设计一种自适应空间权重卷积模块来改进原C2f模块,提升网络对多尺度特征的获取能力;其次,提出多残差可变形卷积模块来增强算法对不规则空间特征的学习能力,并将其融入颈部网络中进一步提升对机房工作人员行为的检测精度;然后,针对当前机房图像数据集缺少的问题,从现有媒体中收集和标注相关图像,并使用迁移学习在现有训练权重基础上进一步调试优化;最后,引入Wise-IoU损失函数解决自建数据集中低质量示例对训练结果的影响。实验结果表明,改进后的算法在标准NTU RGB+D数据集的测试精度为87.84%,优于对比算法;在真实机房的测试中相较于原YOLOv8,准确度和召回率分别提高了13.24%和10.47%,参数量降低了18.07%。
中图分类号: