计算机与现代化 ›› 2024, Vol. 0 ›› Issue (07): 13-20.doi: 10.3969/j.issn.1006-2475.2024.07.003

• 人工智能 • 上一篇    下一篇

 基于STAGCN-Informer时空组合模型的风电功率预测方法

  


  1. (1.沈阳化工大学计算机科学与技术学院,辽宁 沈阳 110142; 2.辽宁省化工过程工业智能化技术重点实验室,辽宁 沈阳 110142)





  • 出版日期:2024-07-25 发布日期:2024-08-07
  • 基金资助:
    国家外国专家计划项目(G2022006008L); 辽宁省自然科学基金资助项目(2022-MS-291); 辽宁省教育厅基本科研项目(LJKMZ20220781)

Wind Power Prediction Method Based on STAGCN-Informer Spatiotemporal Fusion Model

  1. (1. College of Computer Science and Technology, Shenyang University of Chemical Technology, Shenyang 110142, China;
    2. Liaoning Key Laboratory of Intelligent Technology for Chemical Process Industry, Shenyang 110142, China)
  • Online:2024-07-25 Published:2024-08-07

摘要: :针对风电功率预测中,空间信息受时空波动性和随机性影响无法有效提取,导致预测精度不足的问题,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)、融合时空注意力图卷积网络(Spatiotemporal Attention Graph Convolutional Network, STAGCN)和改进Informer的组合模型(STAGCN-Informer-DCP)。首先运用VMD对原始特征进行模态分解,提取出不同时间尺度上的特征信息。同时利用北方苍鹰算法(Northern Goshawk Optimization, NGO)优化VMD的核心参数(惩罚因子和K值)选择。其次,利用融合时空注意力的STAGCN模块动态捕捉目标风机与近邻相似风机的时空特征,并将其与原始的信号分量融合获得携带空间尺度信息的特征向量。最后使用改进的Informer模型提取时序上下文的长期依赖关系,并实现多步输出预测。实验结果表明,该组合模型能较好地捕捉动态时空依赖,并有效提高了中长期风电预测的准确度。

关键词: 变分模态分解, 时空注意力机制, Informer模型, 北方苍鹰优化算法, 图卷积网络

Abstract:  Aiming at the problem that the spatial information cannot be effectively extracted due to the influence of spatiotemporal fluctuation and randomness in wind power forecasting, resulting in insufficient prediction accuracy, a model named STAGCN-Informer-DCP is proposed based on Variational Mode Decomposition (VMD),fusion of Spatiotemporal Attention Graph Convolutional Network (STAGCN) and improved Informer combination model. Firstly, VMD is used to perform modal decomposition on the original features, and the feature information on different time scales is extracted. At the same time, the selection of core parameters (penalty factor and K value) of VMD is optimized by using northern goshawk optimization (NGO). Secondly, the STAGCN module that integrates spatio-temporal attention is used to dynamically capture the spatio-temporal features of the target wind turbine and its neighbors, and fuses them with the original signal components to obtain a feature vector carrying spatial scale information. Finally, the improved Informer model is used to extract the long-term dependencies of temporal context and realizes multi-step output prediction. The experimental results show that the combination model can better capture the dynamic space-time dependence, and effectively improve the accuracy of medium and long-term wind power forecasting.

Key words:  , variational mode decomposition, spatiotemporal attention mechanism, Informer model, northern goshawk optimization, graph convolutional network

中图分类号: