计算机与现代化 ›› 2024, Vol. 0 ›› Issue (04): 66-76.doi: 10.3969/j.issn.1006-2475.2024.04.012

• 中文信息处理技术 • 上一篇    下一篇

基于改进对抗学习及融合特征的短文本分类框架

  


  1. (1.湖州师范学院长三角(湖州)智慧交通研究院,浙江 湖州 313000; 2.湖州师范学院浙江省现代农业资源智慧管理与应用研究重点实验室,浙江 湖州 313000; 3.湖州学院理工学院,浙江 湖州 313000)
  • 出版日期:2024-04-30 发布日期:2024-05-13
  • 作者简介:宁召阳(1998—),男,山东泰安人,硕士研究生,研究方向:自然语言处理,E-mail: 757885345@qq.com; 申情(1982—),女,山西襄垣人,副教授,硕士,研究方向:个性化推荐,信息融合,E-mail: sq@zjhu.edu.cn; 郝秀兰(1970—),女,山西怀仁人,副教授,硕士生导师,博士,研究方向:数据与知识工程,自然语言处理,E-mail: hxl2221_cn@zjhu.edu.cn; 通信作者:赵康(1994—),男,河南邓州人,助理实验师,硕士,研究方向:数据挖掘,强化学习,E-mail: 03051@zjhu.edu.cn。
  • 基金资助:
    浙江省杰出青年科学基金资助项目(LR20F020002); 湖州科技计划项目(2021C23003)

Short Text Classification Method Based on Improved Adversarial Learning and Fusion Features


  1. (1. Yangtze Delta Region (Huzhou) Institute of Intelligent Transportation, Huzhou University, Huzhou 313000, China;
    2. Key Laboratory of Smart Management & Application of Modern Agricultural Resources, Huzhou University, Huzhou 313000, China;
    3. School of Science and Engineering, Huzhou College, Huzhou 313000, China)
  • Online:2024-04-30 Published:2024-05-13

摘要: 摘要:在短文本分类中,由于短文本具有字数较少、存在歧义、关键信息少并且不易捕捉等特点,对其进行分类的算法模型在训练及推理时往往存在差异性,并且主流分类模型基本是在关键特征上进行建模而忽略了非关键特征信息,这加大了其在精确分类上面临的挑战。针对上述问题,本文提出一种结合多种对抗训练策略融合及改进自注意力机制的短文本分类框架。模型一开始在文本向量表示层面进行对字嵌入加入对抗扰动,强化文本表示能力,并在F1分数达到一定阈值后加入改进对模型权重的对抗扰动,强化模型在训练及推理时的泛化能力,从而辅助提高该框架各分类器的特征学习能力。在特征学习网络模块方面,本文利用多尺度卷积模块和双向长短期记忆神经网络相结合来学习不同粒度特征,为了学习不相邻的特征信息,引入空洞卷积,增大卷积感受野,设计一个门控机制来控制该层信息的学习速度;最后,通过加入一种新型注意力机制,建模关键信息的同时也建模了非关键特征信息,同时加入损失进行计算,增强模型学习特征信息的能力并降低过拟合的风险。在2个大型公开数据集THUCNews新闻标题数据集及今日头条新闻标题数据集测试显示,本文方法的F1分数相比于当前主流模型及经典模型分类效果最多提升了4.93个百分点及6.14个百分点,取得了不错的效果,本文还对加入权重扰动阈值和不同模块的有效性进行了对比及消融实验探究。

关键词: 关键词:对抗训练, 策略融合, 空洞卷积, 非关键信息, 注意力机制

Abstract: Abstract: Text classification is one of the most important directions in natural language processing research. Short text has the characteristics of less word count, ambiguity, less key information and not easy to capture, but the algorithm models that classify them are often different in training and reasoning, and mainstream classification models basically model key features and ignore non-key feature information, which increases the challenges in accurate classification. In order to solve the above problems, this paper proposes a short text classification framework combining the fusion of multiple adversarial training strategies and improving the self-attention mechanism. At the beginning, the model adds adversarial perturbation to the text vector representation level to strengthen the text representation ability, and adds an adversarial perturbation to improve the model weights after the F1 score reaches a certain threshold to strengthen the generalization ability of the model during training and inference, thereby assisting in improving the feature learning ability of each classifier of the framework. In terms of feature learning network module, this paper uses the combination of multi-scale convolutional module and bidirectional long short-term memory neural network to learn different granular features, in order to learn nonadjacent feature information, introduces hole convolution, increases the convolution receptive field, and designs a gating mechanism to control the learning speed of this layer information. Finally, by adding a new attention mechanism, the key information is modeled and the non-critical information is modeled, and the loss is added for calculation, which enhances the model’s ability to learn feature information and reduces the risk of overfitting. The tests of THUCNews news headline dataset and Toutiao headline dataset of two large-scale public datasets show that the F1 score of this method is increased by up to 4.93 percentage points and 6.14 percentage points compared with the current mainstream model and classical model, and the effectiveness of adding weight disturbance threshold and different modules is also compared and ablation experiments are explored.

Key words: Key words: adversarial training, strategy fusion, void convolution, non-critical information, attention mechanisms

中图分类号: