计算机与现代化 ›› 2023, Vol. 0 ›› Issue (03): 1-5.

• 图像处理 •    下一篇

基于HMRF的改进Kmeans脑肿瘤分割算法

  

  1. (中北大学信息与通信工程学院,山西 太原 030051)
  • 出版日期:2023-04-17 发布日期:2023-04-17
  • 作者简介:马瑜涓(1998—),女,山西忻州人,硕士研究生,研究方向:医学图像处理,信息与信号处理,E-mail: mayujuan710@163.com; 韩建宁(1980—),男,山西太原人,教授,博士,研究方向:医学图像处理,信号处理技术,声学超材料,E-mail: hanjn46@nuc.edu.cn; 史韶杰(1997—),男,河北张家口人,硕士研究生,研究方向:医学图像处理,计算机视觉与图像处理,E-mail: ssjhustler@163.com; 曹尚斌(1998—),男,河北石家庄人,硕士研究生,研究方向:图像处理,硬件电路设计,E-mail: manbaout1@163.com; 杨志秀(1997—),女,山西朔州人,硕士研究生,研究方向:医学图像处理,信息与信号处理,E-mail: yangzx101@163.com。
  • 基金资助:
    国家自然科学基金面上项目(61671414); 山西省基础研究计划项目(202102021224201)

Improved Kmeans Segmentation Algorithm for Brain Tumor Based on HMRF

  1. (School of Information and Communication Engineering, North University of China, Taiyuan 030051, China)
  • Online:2023-04-17 Published:2023-04-17

摘要: 为了解决磁共振成像脑部肿瘤区域出现误识别及对脑MRI图像中的肿瘤部位分割时出现的不确定性等问题,提出一种改进的Kmeans算法与隐马尔可夫随机场模型(HMRF)相结合的分割方法,对脑肿瘤图像实现精准分割。首先将Kmeans算法的欧氏距离替换成曼哈顿-切比雪夫距离并用改进后的Kmeans算法对待分割图像进行初始参数估计和初始分割,然后通过HMRF理论获得图像的空间信息,并结合EM算法对聚类中心进行更新,获得更为准确的聚类中心,从而提高算法的分割性能。实验结果表明,该方法具有良好的脑部肿瘤分割性能效果,其中Dice系数和Jaccard系数的平均值分别达到了0.9289和0.8725。

关键词: 脑肿瘤分割, Kmeans算法, HMRF, EM算法, 聚类中心

Abstract: In order to solve the problems of misidentification of brain tumor regions in MRI and the uncertainty in segmentation of tumor sites in brain MRI images, an improved Kmeans algorithm combined with hidden Markov random field (HMRF) model  is proposed to achieve accurate segmentation of brain tumor images. Firstly, the Euclidean distance of Kmeans algorithm is replaced by Manhattan-Chebyshev distance and the improved Kmeans algorithm is used to estimate the initial parameters and initial segmentation of the image to be segmented. Then the spatial information of the image is obtained by HMRF theory and the clustering center is updated by combining with EM algorithm to obtain more accurate clustering center so as to improve the segmentation performance of the algorithm. The experimental results show that the proposed method has good performance effect of brain tumor segmentation, in which the average values of Dice coefficient and Jaccard coefficient reach 0.9289 and 0.8725, respectively.

Key words: segmentation of brain tumor, Kmeans algorithm, HMRF, EM algorithm, clustering center