[1] 周平,殷波,邱雪松,等. 面向服务可靠性的云资源调度方法[J]. 电子学报, 2019,47(5):1036-1043.
[2] 毛莺池,郝帅,平萍,等. 基于组合双向拍卖的云资源调度方法[J]. 计算机应用, 2019,39(1):1-7.
[3] 李双刚,张爽,王兴伟. 基于自适应虚拟机迁移的云资源调度机制[J]. 计算机科学, 2020,47(9):238-245.
[4] 李启锐,彭志平,崔得龙,等. 容器云环境虚拟资源配置策略的优化[J]. 计算机应用, 2019,39(3):784-789.
[5] 张人龙,刘小红. 大数据环境下基于谱机器学习的云物流资源配置[J]. 统计与决策, 2021(9):177-179.
[6] LOU G X, CAI Z Y. A cloud computing oriented neural network for resource demands and management scheduling[J]. International Journal of Network Security, 2019,21(3):477-482.
[7] 高天阳,虞慧群,范贵生. 基于模拟退火遗传算法的云资源调度方法[J]. 华东理工大学学报(自然科学版), 2019,45(3):471-477.
[8] SREENU K, SREELATHA M. W-scheduler: Whale optimization for task scheduling in cloud computing[J]. Cluster Computing, 2019,22(1):1087-1098.
[9] 聂清彬,潘峰,吴嘉诚,等. 基于改进蚁群算法的自适应云资源调度模型研究[J]. 激光与光电子学进展, 2020,57(1):82-88.
[10]TAN B, MA H, MEI Y. Novel genetic algorithm with dual chromosome representation for resource allocation in container-based clouds[C]// 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). 2019:452-456.
[11]PIRAGHAJ S F, DASTJERDI A V, CALHEIROS R N, et al. A framework and algorithm for energy efficient container consolidation in cloud data centers[C]// 2015 IEEE International Conference on Data Science and Data Intensive Systems. 2015:368-375.
[12]VALDEZ M G, GUERVS J J M. A container-based cloud-native architecture for the reproducible execution of multi-population optimization algorithms[J]. Future Generation Computer Systems, 2021,116:234-252.
[13]TAN B, MA H, MEI Y, et al. A cooperative coevolution genetic programming hyper-heuristics approach for on-line resource allocation in container-based clouds[J]. IEEE Transactions on Cloud Computing, 2022,10(3):1500-1514.
[14]龚坤,武永卫,陈康. 容器云多维资源利用率均衡调度研究[J]. 计算机应用研究, 2020,37(4):1102-1106.
[15]陈暄,徐见炜,龙丹. 基于蚁群优化-蛙跳算法的云计算资源调度算法[J]. 计算机应用, 2018,38(6):1670-1674.
[16]SHI T, MA H, CHEN G. Energy-aware container consolidation based on PSO in cloud data centers[C]// 2018 IEEE Congress on Evolutionary Computation (CEC). 2018. DOI:10.1109/CEC.2018.8477708.
[17]NABI S, AHMED M. PSO-RDAL:Particle swarm optimization-based resource- and deadline-aware dynamic load balancer for deadline constrained cloud tasks[J]. The Journal of Supercomputing, 2022,78(4):4624-4654.
[18]BALICKI J. Many-objective quantum-inspired particle swarm optimization algorithm for placement of virtual machines in smart computing cloud[J]. Entropy, 2021,24(1):58.
[19]BANSAL M, MALIK S K. A multi-faceted optimization scheduling framework based on the particle swarm optimization algorithm in cloud computing[J]. Sustainable Computing: Informatics and Systems, 2020,28. DOI:10.1016/j.suscom.2020.100429.
[20]MOHAMED A M, ABDELSALAM H M. A multicriteria optimization model for cloud service provider selection in multicloud environments[J]. Software: Practice and Experience, 2020,50(6):925-947.
[21]刘扬,魏蔚,张伟哲. 随机需求下面向异质费用的云资源调度算法[J]. 哈尔滨工业大学学报, 2018,50(11):116-121.
[22]齐平,王福成,王必晴. 一种基于图模型的可信云资源调度算法[J]. 山东大学学报(理学版), 2018,53(1):63-74.
[23]贾嘉,慕德俊. 基于粒子群优化的云计算低能耗资源调度算法[J]. 西北工业大学学报, 2018,36(2):339-344.
[24]CHOUDHARY A, GUPTA I, SINGH V, et al. A GSA based hybrid algorithm for bi-objective workflow scheduling in cloud computing[J]. Future Generation Computer Systems, 2018,83:14-26.
[25]ZUO L, DONG S, SHU L, et al. A multiqueue interlacing peak scheduling method based on tasks’ classification in cloud computing[J]. IEEE Systems Journal, 2018,12(2):1518-1530.
[26]VENKATASWAMY S B, MANDAL I, KESHAVARAO S.ChicWhale optimization algorithm for the VM migration in cloud computing platform[J]. Evolutionary Intelligence, 2020,13(5). DOI:10.1007/s12065-020-00386-9.
[27]DEVARAJ A F S, ELHOSENY M, DHANASEKARAN S, et al. Hybridization of firefly and improved multi-objective particle swarm optimization algorithm for energy efficient load balancing in cloud computing environments[J]. Journal of Parallel and Distributed Computing, 2020,142:36-45.
|