[1] 邬柯杰,吴吉东,叶梦琪. 社交媒体数据在自然灾害应急管理中的应用研究综述[J]. 地理科学进展, 2020,39(8):1412-1422.
[2] IMRAN M, CASTILLO C, DIAZ F, et al. Processing social media messages in mass emergency: A survey[J]. ACM Computing Surveys, 2015,47(4). DOI: 10.1145/2771588.
[3] DALY S, THOM J A. Mining and classifying image posts on social media to analyse fires[C]// Proceedings of the ISCRAM 2016 Conference. 2016.
[4] HUANG Y, DU C Z, XUE Z H, et al. What makes multi-modal learning better than single (provably)[J]. arXiv preprint arXiv:2106.04538, 2021.
[5] BALTRUSAITIS T, AHUJA C, MORENCY L P. Multimodal machine learning: A survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019,41(2):423-443.
[6] ATREY P K, HOSSAIN M A, EL SADDIK A, et al. Multimodal fusion for multimedia analysis: A survey[J]. Multimedia Systems, 2010,16(6):345-379.
[7] SNOEK C G M, WORRING M, SMEULDERS A W M. Early versus late fusion in semantic video analysis[C]// Proceedings of the 13th Annual ACM International Conference on Multimedia. 2005:399-402.
[8] HALL D L, LLINAS J. An introduction to multisensor data fusion[J]. Proceedings of the IEEE, 1997,85(1):6-23.
[9] NOJAVANASGHARI B, GOPINATH D, KOUSHIK J, et al. Deep multimodal fusion for persuasiveness prediction[C]// Proceedings of the 18th ACM International Conference on Multimodal Interaction. 2016:284-288.
[10]OFLI F, ALAM F, IMRAN M. Analysis of social media data using multimodal deep learning for disaster response[J]. arXiv preprint arXiv:2004.11838, 2020.
[11]PEREZ-RUA J M, VIELZEUF V, PATEUX S, et al. MFAS: Multimodal fusion architecture search[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:6959-6968.
[12]XU N, MAO W J, CHEN G D. Multi-interactive memory network for aspect based multimodal sentiment analysis[C]// Proceedings of the 2019 AAAI Conference on Artificial Intelligence. 2019,33(1):371-378.
[13]ABAVISANI M, WU L W, HU S L, et al. Multimodal categorization of crisis events in social media[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:14667-14677.
[14]LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1449-1457.
[15]NGUYEN D, NGUYEN K, SRIDHARAN S, et al. Deep spatio-temporal feature fusion with compact bilinear pooling for multimodal emotion recognition[J]. Computer Vision and Image Understanding, 2018,174:33-42.
[16]CHOI J H, LEE J S. EmbraceNet: A robust deep learning architecture for multimodal classification[J]. Information Fusion, 2019,51:259-270.
[17]MERITY S, KESKAR N S, SOCHER R. Regularizing and optimizing LSTM language models[J]. arXiv preprint arXiv:1708.02182, 2017.
[18]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. 2015:448-456.
[19]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014,15(1):1929-1958.
[20]WAN L, ZEILER M, ZHANG S X, et al. Regularization of neural networks using dropconnect[C]// Proceedings of the 30th International Conference on Machine Learning. 2013,3:1058-1066.
[21]LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015,521(7553):436-444.
[22]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[23]ALAM F, OFLI F, IMRAN M. CrisisMMD: Multimodal Twitter datasets from natural disasters[C]// Proceedings of the 12th International AAAI Conference on Web and Social Media. 2018:465-473.
[24]HOWARD J, GUGGER S. Fastai: A layered API for deep learning[J]. Information, 2020,11(2). DOI: 10.3390/info11020108.
[25]DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. The Journal of Machine Learning Research, 2011,12:2121-2159.
|