[1] ROUSSEEUW P J, LEROY A M. Robust Regression and Outlier Detection[M]. New York: John Wiley & Sons, 1987.
[2] JIANG F, SUI Y F, CAO C G. A hybrid approach to outlier detection based on boundary region[J]. Pattern Recognition Letter, 2011,32(14):1860-1870.
[3] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying density-based local outliers[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. 2000:93-104.〖HJ0.27mm〗
[4] 耿志强,姬威,韩永明,等. 基于维度最大熵数据流聚类的异常检测方法[J]. 控制与决策, 2016,31(2):343-348.
[5] 江峰,王凯郦,于旭,等. 基于粗糙熵的离群点检测方法及其在无监督入侵检测中的应用[J]. 控制与决策, 2020,35(5):1199-1204.
[6] 袁钟,冯山. 基于邻域值差异度量的离群点检测算法[J]. 计算机应用, 2018,38(7):1905-1909.
[7] 袁钟,张贤勇,冯山. 邻域粗糙集中基于序列的混合型属性离群点检测[J]. 小型微型计算机系统, 2018,39(6):1317-1322.
[8] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982,11(5):341-356.
[9] HU Q H, YU D R, XIE Z X. Neighborhood classifiers[J]. Expert Systems with Applications, 2008,34(2):866-876.
[10]HU Q H, LIU J F, YU D R. Mixed feature selection based on granulation and approximation[J]. Knowledge-Based Systems, 2008,21(4):294-304.
[11]HU Q H, YU D R, LIU J F, et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information Sciences, 2008,178(18):3577-3594.
[12]SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948,27(3):379-423.
[13]HU Q H, YU D R. Neighborhood entropy[C]// Proceedings of the 2009 International Conference on Machine Learning and Cybernetics. 2009,3:1776-1782.
[14]CHEN Y M, WU K S, CHEN X H, et al. An entropy-based uncertainty measurement approach in neighborhood systems[J]. Information Sciences, 2014,279:239-250.
[15]ZENG K, SHE K, NIU X Z. Feature selection with neighborhood entropy-based cooperative game theory[J]. Computational Intelligence and Neuroscience, 2014,2014. DOI:10.1155/2014/479289.
[16]WILSON D R, MARTINEZ T R. Improved heterogeneous distance functions[J]. Journal of Artificial Intelligence Research, 1997,6(1):1-34.
[17]YUAN Z, ZHANG X Y, FENG S. Hybrid data-driven outlier detection based on neighborhood information entropy and its developmental measures[J]. Expert Systems with Applications, 2018,112:243-257.
[18]盛魁,卞显福,董辉,等. 基于邻域粗糙集组合度量的混合数据属性约简算法[J]. 计算机应用与软件, 2020,37(2):234-239.
[19]RAMASWAMY S, RASTOGI R, SHIM K. Efficient algorithms for mining outliers from large data sets[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. 2000:427-438.
[20]CHEN Y M, MIAO D Q, ZHANG H. Y. Neighborhood outlier detection[J]. Expert Systems with Application, 2010,37(12):8745-8749.
[21]袁钟. 基于邻域粗糙集的混合型属性离群点检测方法研究[D]. 成都:四川师范大学, 2018.
[22]HARKINS S, HE H X, WILLIAMS G J, et al. Outlier detection using replicator neural networks[C]// Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery. 2002:170-180.
[23]江峰,杜军威,葛艳,等. 基于粗糙集理论的序列离群点检测[J]. 电子学报, 2011,39(2):345-350.
[24]张玉婷. 基于邻域粗糙度量的离群点检测方法研究[D]. 成都:四川师范大学, 2021.
[25]谭阳. 基于粗糙熵的渐进式离群点检测方法研究[D]. 成都:四川师范大学, 2021.
[26]杨晓玲,张贤勇. 基于邻域粗糙隶属函数的离群点检测[J]. 计算机工程与设计, 2019,40(2):533-539.
[27]郭春. 基于数据挖掘的网络入侵检测关键技术研究[D]. 北京:北京邮电大学, 2014.
[28]TAN P N, STEINBACH M, KUMAR V. Introduction to Data Mining[M]. Pearson Education India, 2016.[1] ROUSSEEUW P J, LEROY A M. Robust Regression and Outlier Detection[M]. New York: John Wiley & Sons, 1987.
[2] JIANG F, SUI Y F, CAO C G. A hybrid approach to outlier detection based on boundary region[J]. Pattern Recognition Letter, 2011,32(14):1860-1870.
[3] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying density-based local outliers[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. 2000:93-104.〖HJ0.27mm〗
[4] 耿志强,姬威,韩永明,等. 基于维度最大熵数据流聚类的异常检测方法[J]. 控制与决策, 2016,31(2):343-348.
[5] 江峰,王凯郦,于旭,等. 基于粗糙熵的离群点检测方法及其在无监督入侵检测中的应用[J]. 控制与决策, 2020,35(5):1199-1204.
[6] 袁钟,冯山. 基于邻域值差异度量的离群点检测算法[J]. 计算机应用, 2018,38(7):1905-1909.
[7] 袁钟,张贤勇,冯山. 邻域粗糙集中基于序列的混合型属性离群点检测[J]. 小型微型计算机系统, 2018,39(6):1317-1322.
[8] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982,11(5):341-356.
[9] HU Q H, YU D R, XIE Z X. Neighborhood classifiers[J]. Expert Systems with Applications, 2008,34(2):866-876.
[10]HU Q H, LIU J F, YU D R. Mixed feature selection based on granulation and approximation[J]. Knowledge-Based Systems, 2008,21(4):294-304.
[11]HU Q H, YU D R, LIU J F, et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information Sciences, 2008,178(18):3577-3594.
[12]SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948,27(3):379-423.
[13]HU Q H, YU D R. Neighborhood entropy[C]// Proceedings of the 2009 International Conference on Machine Learning and Cybernetics. 2009,3:1776-1782.
[14]CHEN Y M, WU K S, CHEN X H, et al. An entropy-based uncertainty measurement approach in neighborhood systems[J]. Information Sciences, 2014,279:239-250.
[15]ZENG K, SHE K, NIU X Z. Feature selection with neighborhood entropy-based cooperative game theory[J]. Computational Intelligence and Neuroscience, 2014,2014. DOI:10.1155/2014/479289.
[16]WILSON D R, MARTINEZ T R. Improved heterogeneous distance functions[J]. Journal of Artificial Intelligence Research, 1997,6(1):1-34.
[17]YUAN Z, ZHANG X Y, FENG S. Hybrid data-driven outlier detection based on neighborhood information entropy and its developmental measures[J]. Expert Systems with Applications, 2018,112:243-257.
[18]盛魁,卞显福,董辉,等. 基于邻域粗糙集组合度量的混合数据属性约简算法[J]. 计算机应用与软件, 2020,37(2):234-239.
[19]RAMASWAMY S, RASTOGI R, SHIM K. Efficient algorithms for mining outliers from large data sets[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. 2000:427-438.
[20]CHEN Y M, MIAO D Q, ZHANG H. Y. Neighborhood outlier detection[J]. Expert Systems with Application, 2010,37(12):8745-8749.
[21]袁钟. 基于邻域粗糙集的混合型属性离群点检测方法研究[D]. 成都:四川师范大学, 2018.
[22]HARKINS S, HE H X, WILLIAMS G J, et al. Outlier detection using replicator neural networks[C]// Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery. 2002:170-180.
[23]江峰,杜军威,葛艳,等. 基于粗糙集理论的序列离群点检测[J]. 电子学报, 2011,39(2):345-350.
[24]张玉婷. 基于邻域粗糙度量的离群点检测方法研究[D]. 成都:四川师范大学, 2021.
[25]谭阳. 基于粗糙熵的渐进式离群点检测方法研究[D]. 成都:四川师范大学, 2021.
[26]杨晓玲,张贤勇. 基于邻域粗糙隶属函数的离群点检测[J]. 计算机工程与设计, 2019,40(2):533-539.
[27]郭春. 基于数据挖掘的网络入侵检测关键技术研究[D]. 北京:北京邮电大学, 2014.
[28]TAN P N, STEINBACH M, KUMAR V. Introduction to Data Mining[M]. Pearson Education India, 2016.
|