[1] GAO G H, GAO J Y, LIU Q J, et al. CNN-based density estimation and crowd counting: A survey[J]. arXiv preprint arXiv:2003.12783, 2020.
[2] ENZWEILER M, GAVRILAD M. Monocular pedestrian detection: Survey and experiments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,31(12):2179-2195.
[3] CHAN A B, VASCONCELOS N. Bayesian poisson regression for crowd counting[C]// Proceedings of the 2009 IEEE International Conference on Computer Vision. 2009:545-551.
[4] TIAN Y, SIGAL L, BADINO H, et al. Latent gaussian mixture regression for human pose estimation[C]// Asian Conference on Computer Vision. 2010:679-690.
[5] ZHANG C, LI H S, WANG X G, et al. Cross-scene crowd counting via deep convolutional neural networks[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:833-841.
[6] ZHANG Y Y, ZHOU D S, CHEN S Q, et al. Single-image crowd counting via multi-column convolutional neural network[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:589-597.
[7] SAM D B, SURYA S, BABU R V. Switching convolutional neural network for crowd counting[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:5744-5752.
[8] GAO J Y, WANG Q, LI X L. PCC Net: Perspective crowd counting via spatial convolutional network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019,30(10):3486-3498.
[9] LI Y H, ZHANG X F, CHEN D M. CSRNET: Dilated convolutional neural networks for understanding the highly congested scenes[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:1091-1100.
[10]JIANG X L, XIAO Z H, ZHANG B C, et al. Crowd counting and density estimation by trellis encoder-decoder networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:6133-6142.
[11]XU C F, QIU K, FU J L, et al. Learn to scale: Generating multipolar normalized density maps for crowd counting[C]// Proceedings of the 2019 IEEE International Conference on Computer Vision. 2019:8382-8390.
[12]XU C F, LIANG D K, XU Y C, et al. Autoscale: Learning to scale for crowd counting[J]. arXiv preprint arXiv:1912.09632, 2019.
[13]CENGGORO T W, ASLAMIAH A H, YUNANTOA. Feature pyramid networks for crowd counting[J]. Procedia Computer Science, 2019,157:175-182.
[14]SAM D B, PERI S V, SUNDARARAMAN M N, et al. Locate, size and count: Accurately resolving people in dense crowds via detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(8):2739-2751.
[15]苏军雄,见雪婷,刘玮,等. 基于可变形卷积神经网络的手势识别方法[J]. 计算机与现代化, 2018(4):62-67.
[16]陈凯,祖莉,欧屹. 基于YOLOv3与ResNet50的摄影机器人人脸识别跟踪系统[J]. 计算机与现代化, 2020(4):30-36.
[17]SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Highway networks[J]. arXiv preprint arXiv:1505.00387, 2015.
[18]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[19]XIE S, GIRSHICK R, DOLLR P, et al. Aggregated residual transformations for deep neural networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:1492-1500.
[20]SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:2818-2826.
[21]HU J, SHEN L,ALBANIE S. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[22]LI X, WANG W H, HU X L, et al. Selective kernel networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:510-519.
[23]ZHANG H, WU C R, ZHANG Z Y, et al. Resnest: Split-attention networks[J].arXiv preprint arXiv:2004.08955, 2020.
[24]CHEN L C, PAPANDREOU G, KOKKINOSI, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv preprint arXiv:1412.7062, 2014.
[25]CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,40(4):834-848.
[26]CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv:1706.05587, 2017.
[27]CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// European Conference on Computer Vision. 2018:801-818.
[28]HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. 2019:558-567.
[29]TIAN Z, HE T, SHEN C H, et al. Decoders matter for semantic segmentation: Data-dependent decoding enables flexible feature aggregation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:3126-3135.
[30]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. 2016:21-37.
[31]吴水清,王宇,师岩. 基于SSD的车辆目标检测[J]. 计算机与现代化, 2019(5):35-40.
[32]GAO J Y, LIN W, ZHAO B, et al. C3 framework: An open-source pytorch code for crowd counting[J]. arXiv preprint arXiv:1907.02724, 2019.
[33]IDREES H, TAYYAB M, ATHREY K, et al. Composition loss for counting, density map estimation and localization in dense crowds[C]// European Conference on Computer Vision. 2018:532-546.
[34]ONORO-RUBIO D, LPEZ-SASTRE R J. Towards perspective-free object counting with deep learning[C]// European Conference on Computer Vision. 2016:615-629.
[35]HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006,313(5786):504-507.
[36]HE K M, GIRSHICK R, DOLLR P. Rethinking imagenet pre-training[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. 2019:4918-4927.
|