[1] WANG L Z, CHEN Y Z, WANG W X, et al. Physical controllability of complex networks[J]. Scientific Reports, 2017,7(1). DOI: 10.1038/srep40198.
[2] ANGULO M T, MORENO J A, LIPPNER G, et al. Fundamental limitations of network reconstruction from temporal data[J]. Journal of the Royal Society, Interface, 2017,14(127). DOI: 10.1098/rsif.2016.0966.
[3] LINDMARK G, ALTAFINI C. Minimum energy control for complex networks[J]. Scientific Reports, 2018,8(1). DOI: 10.1038/s41598-018-21398-7.
[4] BOF N, BAGGIO G, ZAMPIERI S. On the role of network centrality in the controllability of complex networks[J]. IEEE Transactions on Control of Network Systems, 2017,4(3):643-653.
[5] WANG W X, LAI Y C, GREBOGI C, et al. Network reconstruction based on evolutionary-game data via compressive sensing[J]. Physical Review X, 2011,1(2). DOI: 10.1103/PhysRevX.1.021021.
[6] MENARA T, BAGGIO G, BASSETT D S, et al. A framework to control functional connectivity in the human brain[C]// Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC). 2019:4697-4704.
[7] RAZA K, ALAM M. Recurrent neural network based hybrid model for reconstructing gene regulatory network[J]. Computational Biology and Chemistry, 2016,64:322-334.
[8] WANG W X, YANG R, LAI Y C, et al. Time-series-based prediction of complex oscillator networks via compressive sensing[J]. Europhysics Letters, 2011,94(4). DOI: 10.1209/0295-5075/94/48006.
[9] MANTEGNA R N. Hierarchical structure in financial markets[J]. The European Physical Journal B: Condensed Matter and Complex Systems, 1999,11(1):193-197.
[10]LUO Q, LIU X, YI D Y. Reconstructing gene networks from microarray time-series data via Granger causality[C]// Proceedings of the 2009 International Conference on Complex Sciences. 2009:196-209.
[11]HU Y, WANG Z Y, LI X L. Impact of policies on electric vehicle diffusion: An evolutionary game of small world network analysis[J]. Journal of Cleaner Production, 2020,265. DOI: 10.1016/j.jclepro.2020.121703.
[12]KE M L, GAO Z, WU Y P, et al. Compressive sensing-based adaptive active user detection and channel estimation: Massive access meets massive MIMO[J]. IEEE Transactions on Signal Processing, 2020,68:764-779.
[13]ZHANG C C, SONG S T, WEN X T, et al. Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data[J]. Journal of Neuroscience Methods, 2015,245:15-24.
[14]TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007,53(12):4655-4666.
[15]TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001,1:211-244.
[16]FENG J C, JIA K B, LI Z, et al. Bayesian sparse-based reconstruction in bioluminescence tomography improves localization accuracy and reduces computational time[J]. Journal of Biophotonics, 2018,11(4). DOI: 10.1002/jbio.201700214.
[17]包学志. 基于贝叶斯原理的4D-CT图像肝脏呼吸运动预测方法研究[D]. 深圳:中国科学院大学, 2020.
[18]JI Y Z, YUAN S Y, WANG S X, et al. Frequency-domain sparse Bayesian learning inversion of AVA data for elastic parameters reflectivities[J]. Journal of Applied Geophysics, 2016,133:1-8.
[19]ZHANG Z L, JUNG T P, MAKEIG S, et al. Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware[J]. IEEE Transactions on Biomedical Engineering, 2013,60(1):221-224.
[20]郑月龙,张卫国. 多人演化雪堆博弈的合作动态研究[J]. 管理工程学报, 2016,30(4):112-116.
[21]BONGARD J, LIPSON H. Automated reverse engineering of nonlinear dynamical systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(24):9943-9948.
[22]蔡霞,马社祥,孟鑫. 启发式重构算法在压缩传感中的应用研究[J]. 计算机应用研究, 2012,29(11):4232-4234.
[23]FORNASIER M, RAUHUT H. Compressive sensing[M]// Handbook of Mathematical Methods in Imaging. Springer, 2011:187-228.
[24]〖KG-*3〗CANDES E, ROMBERG J. L1-MAGIC: Recovery of Sparse Signals via Convex Programming[DB/OL]. (2005-10-30)[2021-03-29]. http://brainimaging.waisman.wisc.edu/~chung/BIA/download/matlab.v1/l1magic-1.1/l1magic_notes.pdf.
[25]WIPF D P, RAO B D. Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004,52(8):2153-2164.
[26]BRENNAN M, BRESLER G, NAGARAJ D. Phase transitions for detecting latent geometry in random graphs[J]. Probability Theory and Related Fields, 2020,178(3-4):1215-1289.
[27]WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998,393(6684):440-442.
[28]薛晓斐. 基于小世界网络的新冠肺炎疫情谣言传播仿真研究[J]. 图书情报研究, 2021,14(1):51-59.
[29]AMIN F, ABBASI R, REHMAN A, et al. An advanced algorithm for higher network navigation in social Internet of Things using small-world networks[J]. Sensors, 2019,19(9). DOI: 10.3390/s19092007.
|