[1] GAYATHRI S, SRIDHAR V. An improved fast thinning algorithm for fingerprint image[J]. International Journal of Engineering Science and Innovative Technology, 2013,2(1):264-270.
[2] LI C, YIN Y, WU P, et al. Pattern recognition and correction method for skeleton lines at small patch boundaries[J]. Transactions in GIS, 2020,24(5):1402-1426.
[3] 刘砚菊,宋鑫,宋建辉,等. 基于图像中物体骨架形状特征的目标匹配[J]. 沈阳理工大学学报, 2019,38(3):73-77.
[4] CHEN H W, ZHU R D, LI M C, et al. Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays[J]. Optics Express, 2017,25(3):1973-1984.
[5] MA J, REN X, YUREVICH T V. A novel fast iterative parallel thinning algorithm[C]// Proceedings of the 2020 4th International Conference on Vision, Image and Signal Processing. 2020:1-5.
[6] 袁良友,周航,韩丹,等. 引入平滑迭代的骨架提取改进算法[J]. 计算机工程与应用, 2020,56(24):194-199.
[7] CHAO X, XIAO X, LUO Y, et al. New skeleton extraction method based on distance transform[J]. Chinese Journal of Scientific Instrument, 2012,33(12):2851-2856.
[8] TELEA A, VAN WIJK J J. An augmented fast marching method for computing skeletons and centerlines[C]// Proceedings of the Symposium on Data Visualisation. 2002:251-259.
[9] GUO Y H, SENGUR A. A novel 3D skeleton algorithm based on neutrosophic cost function[J]. Applied Soft Computing, 2015,36:210-217.
[10]KOTSUR D, TERESHCHENKO V. Optimization heuristics for computing the Voronoi skeleton[C]// International Conference on Computational Science. 2019:96-111.
[11]SUREZ A J F, HUBERT E. Scaffolding skeletons using spherical Voronoi diagrams[J]. Electronic Notes in Discrete Mathematics, 2017,62:45-50.
[12]HASSOUNA M S, FARAG A A. Robust centerline extraction framework using level sets[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005:458-465.
[13]SZWEDOWSKI T D, FIALKOV J, PAKDEL A, et al. An optimized process flow for rapid segmentation of cortical bones of the craniofacial skeleton using the level-set method[J]. Dentomaxillofacial Radiology, 2013,42(4):1-6.
[14]YANG Z H, GUO F F, DONG P. Robust skeleton extraction of gray images based on level set approach[J]. Journal of Multimedia, 2013,8(1):24-31.
[15]SETHIAN J A, VLADIMIRSKY A. Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes[J]. Proceedings of the National Academy of Sciences, 2000,97(11):5699-5703.
[16]MIREBEAU J M, PORTEGIES J. Hamiltonian fast marching: A numerical solver for anisotropic and non-holonomic Eikonal PDEs[J]. Image Processing on Line, 2019,9:47-93.
[17]CRANE K, WEISCHEDEL C, WARDETZKY M. Geodesics in heat: A new approach to computing distance based on heat flow[J]. ACM Transactions on Graphics (TOG), 2013,32(5):1-11.
[18]YANG J M, STERN F. A highly scalable massively parallel fast marching method for the Eikonal equation[J]. Journal of Computational Physics, 2017,332:333-362.
[19]CRANE K, WEISCHEDEL C, WARDETZKY M. The heat method for distance computation[J]. Communications of the ACM, 2017,60(11):90-99.
[20]SHARP N, CRANE K. A laplacian for nonmanifold triangle meshes[J]. Computer Graphics Forum, 2020,39(5):69-80.
[21]YANG F, COHEN L D. Geodesic distance and curves through isotropic and anisotropic heat equations on images and surfaces[J]. Journal of Mathematical Imaging and Vision, 2016,55(2):210-228.
[22]ROUCHDY Y, COHEN L D. Geodesic voting for the automatic extraction of tree structures. Methods and applications[J]. Computer Vision and Image Understanding, 2013,117(10):1453-1467.
[23]BOUIX S, MARTIN-FERNANDEZ M, UNGAR L, et al. On evaluating brain tissue classifiers without a ground truth[J]. Neuroimage, 2007,36(4):1207-1224.
|