[1] 张南. 基于深度学习的图像哈希检索[D]. 天津:天津工业大学, 2017.
[2] WOESLER R. Fast extraction of traffic parameters and reidentification of vehicles from video data[C]// Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems. 2003:774-778.
[3] SHAN Y, SAWHNEY H S, KUMAR R. Vehicle identification between nonoverlapping cameras without direct feature matching[C]// The 10th IEEE International Conference on Computer Vision. 2005:378-385.
[4] KHAN S D, PORTA F, VIZZARI G. Estimating speeds of pedestrians in real-world using computer vision[C]// International Conference on Cellular Automata. 2014:526-535.
[5] FERIS R S, SIDDIQUIE B, PETTERSON J. Large-scale vehicle detection, indexing, and search in urban surveillance videos[J]. IEEE Transactions on Multimedia, 2011,14(1):28-42.
[6] ZHENG L, WANG S J, ZHOU W G. Bayes merging of multiple vocabularies for scalable image retrieval[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:1955-1962.
[7] ZHENG L, SHEN L Y, TIAN L. Scalable person re-identification: A benchmark[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1116-1124.
[8] KOESTINGER M, HIRZER M, WOHLHART P. Large scale metric learning from equiv-alence constraints[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012:2288-2295.
[9] LIU X C, LIU W, MA H D. Large-scale vehicle re-identification in urban surveil-lance videos[C]// Proceedings of the 2016 IEEE International Conference on Multimedia and Expo. 2016:1-6.
[10]WANG Z D, TANG L M, LIU X H. Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. 2017:379-387.
[11]MENG D C, LI L, LIU X J. Parsing-based view-aware embedding network for vehicle re-identification[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition. 2020:7103-7112.
[12]HE K M, ZHANG X Y, REN S Q. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[13]LIN M, CHEN Q, YAN S C. Network in network[J]. Computer Science, arXiv preprint arXiv:1312.4400, 2013.
[14]ONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-assisted Intervention. 2015:234-241.
[15]ZHENG Z D, RUAN T, WEI Y C, et al. VehicleNet: Learning robust visual representation for vehicle re-identification[J]. IEEE Transactions on Multimedia, 2020(99):1.
[16]TANG Z, NAPHADE M, LIU M Y, et al. CityFlow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification[C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition. 2019:8797-8806.
[17]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// International Conference on Machine Learning. 2015:448-456.
[18]HE K M, GKOXARI G, DOLLAR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. 2017:2980-2988.
[19]ZHONG Z, ZHENG L, CAO D L, et al. Re-ranking person re-identification with k-reciprocal encoding[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:3652-3661.
[20]WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:7794-7803.
[21]HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[J]. Computer Vision and Pattern Recognition, arXiv preprint arXiv:1703.07737, 2017.
[22]ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: A bench-mark[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1116-1124.
[23]PORIKLI F, DIVAKARAN A. Multi-camera calibration, object tracking and query generation[C]// Proceedings of the 2003 International Conference on Multimedia and Expo. 2003:653-656.
[24]ZHOU Y, SHAO L. Viewpoint-aware attentive multi-view inference for vehicle re-identification[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:6489-6498.
[25]LIU X C, LIU W, MEI T, et al. A deep learning-based approach to progressive vehicle re-identification for urban surveillance[C]// European Conference on Computer Vision. 2016:869-884.
[26]SHEN Y T, TONG X, LI H S, et al. Learning deep neural networks for vehicle Re-ID with visual-spatio-temporal path proposals[C]// 2017 IEEE International Conference on Computer Vision. 2017:1900-1909.
[27]WU F Y, YAN S Y, SMITH J, et al. Vehicle re-identification in still images: Application of semi-supervised learning and re-ranking[J]. Signal Processing: Image Communication, 2019,76:261-271.
[28]LIU X B, ZHANG S L, HUANG Q M, et al. RAM: A region-aware deep model for vehicle re-identification[C]// 2018 IEEE International Conference on Multimedia and Expo. 2018:1-6.
[29]ZHU J Q, ZENG H Q, HUANG J C, et al. Vehicle re-identification using quadruple directional deep learning features[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,21(1):410-420.
[30]XU D W, LANG C Y, FENG S H, et al. A framework with a multi-task CNN model joint with a re-ranking method for vehicle re-identification[C]// Proceedings of the 10th International Conference on Internet Multimedia Computing and Service. 2018:1-7.
|