[1] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the kinetics dataset[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:4724-4733.
[2] SUDHAKARAN S, ESCALERA S, LANZ O. LSTA: Long short-term attention for egocentric action recognition[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:9946-9955.
[3] YUAN Y, WANG D, WANG Q. Memory-augmented temporal dynamic learning for action recognition[C]// The 33rd AAAI Conference on Artificial Intelligence. 2019:9167-9175.
[4] WANG M S, NI B B, YANG X K. Recurrent modeling of interaction context for collective activity recognition[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:7408-7416.
[5] IBRAHIM M S, MORI G. Hierarchical relational networks for group activity recognition andretrieval[C]// Proceedings of the 2018 European Conference on Computer Vision. 2018:742-758.
[6] HU G Y, CUI B, HE Y, et al. Progressive relation learning for group activity recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:977-986.
[7] SHU X B, TANG J H, QI G J, et al. Hierarchical long short-term concurrent memory for human interaction recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(3):1110-1118.
[8] EHSANPOUR M, ABEDIN A, SALEH F, et al. Joint learning of social groups, individuals action and sub-group activities in videos[C]// Proceedings of the 2020 European Conference on Computer Vision. 2020:177-195.
[9] WU J C, WANG L M, WANG L, et al. Learning actor relation graphs for group activity recognition[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:9956-9966.
[10]TANG J H, SHU X B, YAN R, et al. Coherence constrained graph LSTM for group activity recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019. DOI: 10.1109/TPAMI.2019.2928540.
[11]王传旭,胡小悦,孟唯佳,等. 基于多流架构与长短时记忆网络的组群行为识别方法研究[J]. 电子学报, 2020,48(4):800-807.
[12]GAMMULLE H, DENMAN S, SRIDHARAN S, et al. Multi-level sequence GAN for group activity recognition[C]// 2018 Asian Conference on Computer Vision. 2018:331-346.
[13]KONG L T, QIN J, HUANG D, et al. Hierarchical attention and context modeling for group activity recognition[C]// 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018:1328-1332.
[14]YAN R, XIE L X, TANG J H, et al. Social adaptive module for weakly-supervised group activity recognition[C]// 2020 European Conference on Computer Vision. 2020:208-224.
[15]DENG Z W, VAHDAT A, HU H X, et al. Structure inference machines: Recurrent neural networks for analyzing relations in group activity recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:4772-4781.
[16]DENG Z W, ZHAI M Y, CHEN L, et al. Deep structured models for group activity recognition[C]// The 2015 British Machine Vision Conference (BMVC). 2015. DOI: 10.5244/C.29.179.
[17]YANG F K, YIN W J, INAMURA T, et al. Group behavior recognition using attention-and graph-based neural networks[C]// The 24th European Conference on Artificial Intelligence (ECAI). 2020:1626-1633.
[18]BISWAS S, GALL J. Structural recurrent neural network (SRNN) for group activity analysis[C]// 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). 2018:1625-1632.
[19]LU L H, LU Y, YU R Z, et al. GAIM: Graph attention interaction model for collective activity recognition[J]. IEEE Transactions on Multimedia, 2020,22(2):524-539.
[20]RAMANATHAN V, HUANG J, ABU-EL-HAIJA S, et al. Detecting events and key actors in multi-person videos[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:3043-3053.
[21]YAN R, TANG J H, SHU X B, et al. Participation-contributed temporal dynamic model for group activity recognition[C]// The 26th ACM International Conference on Multimedia. 2018:1292-1300.
[22]QI M S, WANG Y H, QIN J, et al. StagNet: An attentive semantic RNN for group activity and individual action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020,30(2):549-565.
[23]TANG Y S, LU J W, WANG Z A, et al. Learning semantics-preserving attention and contextual interaction for group activity recognition[J]. IEEE Transactions on Image Processing, 2019,28(10):4997-5012.
[24]王传旭,薛豪. 基于GFU和分层LSTM的组群行为识 别研究方法[J]. 电子学报, 2020,48(8):1465-1471.
[25]陈慧杰,谢毅雄. 基于多分类器投票机的人体姿态识别算法[J]. 计算机与现代化, 2014(4):64-68.
[26]朱坤. 基于高斯混合-贝叶斯模型的轨迹预测[J]. 计算机与现代化, 2019(2):72-81.
[27]SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:2818-2826.
[28]HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV). 2017:2980-2988.
[29]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[30]BAGAUTDINOV T, ALAHI A, FLEURET F, et al. Social scene understanding: End-to-end multi-person action localization and collective activity recognition[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:3425-3434.
[31]WANG L M, XIONG Y J, WANG Z, et al. Temporal segment networks: Towards good practices for deep action recognition[C]// 2016 European Conference on Computer Vision. 2016:20-36.
[32]ZHOU B L, ANDONIAN A, OLIVA A, et al. Temporal relational reasoning in videos[C]// 2018 European Conference on Computer Vision. 2018:831-846
[33]WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7794-7803.
|