[1] GALINDEZ-JAMIOY C A, LOPEZ-HIGUERA J M. Brillouin distributed fiber sensors: An overview and applications[J]. Journal of Sensors, 2012. DOI:10.1155/2012/204121.
[2] MIZUNO Y, ZOU W W, HE Z Y, et al. Operation of Brillouin optical correlation-domain reflectometry: Theoretical analysis and experimental validation[J]. Journal of Lightwave Technology, 2010,28(22):3300-3306.
[3] BAO X Y, CHEN L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012,12(7):8601-8639.
[4] DONG Y K, CHEN L, BAO X Y. Time-division multiplexing-based BOTDA over 100km sensing length[J]. Optics Letters, 2011,36(2):277-279.
[5] GALINDEZ-JAMIOY C A, QUINTELA A, QUINTELA M A, et al. 30cm of spatial resolution using pre-excitation pulse BOTDA technique[C]// The 21st International Conference on Optical Fiber Sensors. 2011,7753.DOI:10.1117/12.884996.
[6] LALAM N, NG W P. Recent development in artificial neural network based distributed fiber optic sensors[C]// 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing(CSNDSP). 2020.DOI:10.1109/CSNDSP49049.2020.9249588.
[7] PANNELL C N, DHLIWAYO J, WEBB D J. The accuracy of parameter estimation from noisy data, with application to resonance peak estimation in distributed Brillouin sensing[J]. Measurement Science and Technology, 1998,9(1):50-57.
[8] FARAHANI M A, CASTILLO-GUERRA E, COLPITTS B G. Accurate estimation of Brillouin frequency shift in Brillouin optical time domain analysis sensors using cross correlation[J]. Optics Letters, 2011,36(21):4275-4277.
[9] FARAHANI M A, CASTILLO-GUERRA E, COLPITTS B G. A detailed evaluation of the correlation-based method used for estimation of the Brillouin frequency shift in BOTDA sensors[J]. IEEE Sensors Journal, 2013,13(12):4589-4598.
[10]ALEM M, SOTO M A, TUR M, et al. Analytical expression and experimental validation of the Brillouin gain spectral broadening at any sensing spatial resolution[C]// 2017 25th Optical Fiber Sensors Conference(OFS). 2017. DOI: 10.1117/12.2267639.
[11]MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943,5(4):115-133.
[12]AZAD A K, WANG L, GUO N, et al. Signal processing using artificial neural network for BOTDA sensor system[J]. Optics Express, 2016,24(6):6769-6782.
[13]RUIZ-LOMBERA R, SERRANO J M, LOPEZ-HIGUERA J M. Automatic strain detection in a Brillouin optical time domain sensor using principal component analysis and artificial neural networks[C]// SENSORS, 2014 IEEE. 2014:1539-1542.
[14]WANG L, ZENG Y, CHEN T. Back propagation neural network with adaptive differential evolution algorithm for time series forecasting[J]. Expert Systems with Applications, 2015,42(2):855-863.
[15]KIM J S, JUNG S. Implementation of the RBF neural chip with the back-propagation algorithm for on-line learning[J]. Applied Soft Computing, 2015,29:233-244.
[16]MIRJALILI S. How effective is the Grey Wolf optimizer in training multi-layer perceptrons[J]. Applied Intelligence, 2015,43(1):150-161.
[17]DEVIKANNIGA D, VETRIVEL K, BADRINATH N . Review of meta-heuristic optimization based artificial neural networks and its applications[J]. Journal of Physics: Conference Series, 2019,1362(1).DOI: 10.1088/1742-6596/1362/1/012074.
[18]LAMBIOTTE R, DELVENNE J C, BARAHONA M. Random walks, Markov processes and the multiscale modular organization of complex networks[J]. IEEE Transactions on Network Science and Engineering, 2014,1(2):76-90.
[19]ZHANG Y J, XU J R, FU X H, et al. Hybrid algorithm combining genetic algorithm with back propagation neural network for extracting the characteristics of multi-peak Brillouin scattering spectrum[J]. Frontiers of Optoelectronics, 2017,10(1):62-69.
[20]张燕君,徐金睿,付兴虎. 基于GA-QPSO混合算法的Brillouin 散射谱特征提取方法[J]. 中国激光, 2016,43(2):138-147.
[21]KANG W X, LI H, HAN Y. Genetic optimization of general regression neural network applied to feature extraction of Brillouin scattering spectrum in BOTDA sensors[C]// 2018 12th International Symposium on Antennas, Propagation and EM Theory(ISAPE). 2018.DOI:10.1109/ISAPE.2018.8634093.
[22]MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016,95:51-67.
[23]Virupakshappa, AMARAPUR B. Computer-aided diagnosis applied to MRI images of brain tumor using cognition based modified level set and optimized ANN classifier[J]. Multimedia Tools and Applications, 2020,79(5-6):3571-3599.
[24]PARAMBANCHARY D, MALLESWARA RAO V. WOA-NN: A decision algorithm for vertical handover in heterogeneous networks[J]. Wireless Networks, 2020,26(1):165-180.
[25]ALJARAH I, FARIS H, MIRJALILI S. Optimizing connection weights in neural networks using the whale optimization algorithm[J]. Soft Computing, 2018,22(1):1-15.
[26]WU X Y, ZHANG S, XIAO W D, et al. The exploration/exploitation tradeoff in whale optimization algorithm[J]. IEEE Access, 2019,7:125919-125928.
[27]SUN Y J, WANG X L, CHEN Y H, et al. A modified whale optimization algorithm for large-scale global optimization problems[J]. Expert Systems with Applications, 2018,114:563-577.
|