[1] 蒋明峰,鲁薏,李杨,等. 基于金字塔卷积结构的深度残差网络心电信号分类方法研究[J]. 生物医学工程学杂志, 2020,37(4):692-698.
[2] 柯丽,王丹妮,杜强,等. 基于卷积长短时记忆网络的心律失常分类方法[J]. 电子与信息学报, 2020,42(8):1990-1998.
[3] MINHAS F A A, ARIF M. Robust electrocardiogram(ECG) beat classification using discrete wavelet transform[J]. Physiological Measurement, 2008,29(5):555-570.
[4] MARTIS R J, ACHARYA U R, MIN L C. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform[J]. Biomedical Signal Processing and Control, 2013,8(5):437-448.
[5] ZHANG Y T, LIU C Y, WEI S S, et al. ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix[J]. Journal of Zhejiang University (Science C: Computer and Electronics), 2014,15(7):564-573.
[6] KUTLU Y, KUNTALP D. Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients[J]. Computer Methods and Programs in Biomedicine, 2012,105(3):257-267.
[7] YE C, KUMAR B V K V, COIMBRA M T. Heartbeat classification using morphological and dynamic features of ECG signals[J]. IEEE Transactions on Biomedical Engineering, 2012,59(10):2930-2941.
[8] ELHAJ F A, SALIM N, HARRIS A R, et al. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals[J]. Computer Methods and Programs in Biomedicine, 2016,127:52-63.
[9] ZUBAIR M, KIM J, YOON C. An automated ECG beat classification system using convolutional neural networks[C]// 2016 6th International Conference on IT Convergence and Security. 2016:335-339.〖HJ1.65mm〗
[10]AL RAHHAL M M, BAZI Y, ALHICHRI H, et al. Deep learning approach for active classification of electrocardiogram signals[J]. Information Sciences, 2016,345:340-354.
[11]张异凡,黄亦翔,汪开正,等. 用于心律失常识别的LSTM和CNN并行组合模型[J]. 哈尔滨工业大学学报, 2019,51(10):76-82.
[12]马瑞琳,刘翔,张瑜,等. 基于深度学习的心电信号异常识别方法[J]. 传感器与微系统, 2020,39(1):29-32.
[13]HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019:25(1):65-69.
[14]赖杰伟,陈韵岱,韩宝石,等. 基于DenseNet的心电数据自动诊断算法[J]. 南方医科大学学报, 2019,39(1):69-75.
[15]潘辉,郑威,张莹莹. 基于改进残差网络对心电信号的识别[J]. 数据采集与处理, 2020,35(4):682-692.
[16]ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:2472-2481.
[17]HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(8):2011-2023.
[18]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[19]HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:2261-2269.
[20]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// 2015 International Conference on Machine Learning. 2015:448-456.
[21]KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
[22]LIU Z D, MENG X G, CUI J J, et al. Automatic identification of abnormalities in 12-lead ECGs using expert features and convolutional neural networks[C]// 2018 International Conference on Sensor Networks and Signal Processing. 2018:163-167.
[23]王文刀,王润泽,魏鑫磊,等. 基于堆叠式双向LSTM的心电图自动识别算法[J]. 计算机科学, 2020,47(7):118-124.
|