计算机与现代化 ›› 2021, Vol. 0 ›› Issue (11): 106-111.

• 模式识别 • 上一篇    下一篇

基于改进残差密集网络的心律失常自动分类

  

  1. (1.青岛大学自动化学院,山东青岛266071;2.青岛大学未来研究院,山东青岛266071)
  • 出版日期:2021-12-13 发布日期:2021-12-13
  • 作者简介:李传栋(1996—),男,山东泰安人,硕士研究生,研究方向:机器学习与模式识别,E-mail: 635529180@qq.com; 通信作者:邱磊(1971—),男,教授,博士,研究方向:信息科学与人工智能,E-mail: 45141545@qq.com; 于雁(1996—),女,硕士研究生,研究方向:机器学习与模式识别,E-mail: 1317189215@qq.com。
  • 基金资助:
    国家重点研发计划项目(2020YFB1313604)

Automatic Classification of Arrhythmia Based on Improved Residual Dense Network

  1. (1. School of Automation, Qingdao University, Qingdao 266071, China; 2. Institute for Future, Qingdao University, Qingdao 266071, China)
  • Online:2021-12-13 Published:2021-12-13

摘要: 实现对不同类型心律失常的自动分类可为医生提供可靠诊断信息,有效提高该类疾病的诊断效率。因此,本文提出一种改进的残差密集网络用于心律失常的自动分类。该模型将改进的残差密集块作为残差密集网络的基本模块,使用深度可分离卷积替代传统卷积可有效提取通道间特征,降低参数量,同时引入通道注意力机制,实现特征选择,提高重要特征的权重分布。实验基于2018中国生理信号挑战赛提供的公开数据集,对9种类型的心律失常进行分类,F1均值达到81.2%,优于主流的深度学习网络模型。实验结果验证了该模型的可行性与优势,为心律失常分类提供了一种新的方法。

关键词: 心律失常, 残差密集网络, 深度可分离卷积, 通道注意力机制, 多标签分类

Abstract: The automatic classification of different types of arrhythmias can provide reliable diagnosis information for doctors and effectively improve the diagnosis efficiency of this kind of diseases. Therefore, this paper proposes an improved residual dense network for automatic classification of arrhythmias. In the model, the improved residual dense block is used as the basic module of residual dense network, and the depthwise separable convolution is used to replace the traditional convolution to effectively extract the features between channels, which reduces the amount of calculation. At the same time, the channel attention mechanism is introduced to realize the feature selection and improve the weight distribution of important features. Based on the public data set provided by 2018 China physiological signal challenge, nine types of arrhythmias are classified, and the Macro F1_score reaches 81.2%, which is better than the mainstream deep learning network model. The experimental results verify the feasibility and advantages of the model, and provide a new method for arrhythmia classification.

Key words: arrhythmia, residual dense network, depthwise separable convolution, channel attention mechanism, multi-label classification