[1] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]// Advances in Neural Information Processing Systems. 2017:4077-4087.
[2] SUNG F, YANG Y X, ZHANG L, et al. Learning to compare: Relation network for few-shot learning[C]//IEEE International Conference on Computer Vision and Pattern Recognition. 2018:1199-1208.
[3] AYTAR Y, ZISSERMAN A. Tabula rasa: Model transfer for object category detection[C]// IEEE International Conference on Computer Vision. 2011:2252-2259.
[4] THRUN S. Is learning the n-th thing any easier than learning the first?[C]// Proceedings of the Advances in Neural Information Processing Systems. 1996:640-646.
[5] KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]// Proceedings of the 32th ACM International Conference on Machine Learning. 2015.
[6] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// The 34th ACM International Conference on Machine Learning. 2017:1126-1135.
[7] AILI C, NILSSON L E. Dual learning -a challenge for higher education in the new landscape of governance[J]. Tertiary Education and Management, 2015,21(4):277-292.
[8] DECHERT W D, O’ DONNELL S I, BROCK W A. Bayes’ learning of unknown parameters[J]. Journal of Difference Equations and Applications, 2007,13(2-3):121-133.
[9] XING E P, NG A Y, JORDAN M I, et al. Distance metric learning, with application to clustering with side-information[C]// Proceedings of the 16th Annual Conference on Neural Information Processing Systems. 2003: 505-512.
[10]LOWE D G. Similarity metric learning for a variable-kernel classifier[J]. Neural Computation, 1995,7(1):72-85.
[11]COVER T M, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967,13(1):21-27.
[12]CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005:539-546.
[13]HADSELL R, CHOPRA S, LECUN Y. Dimensionality reduction by learning an invariant mapping[C]// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006,2:1735-1742.
[14]VAN DER MAATEN L,POSTMA E O, VAN DEN HERIK H J. Dimensionality reduction: A comparative review[J]. Journal of Machine Learning Research, 2009,10(1):66-71.
[15]梁亦聪,丁晓青,方驰. 开集人脸识别中的性能评估系统[J]. 模式识别与人工智能, 2014,27(4):289-293.
[16]HOCHREITER S, YOUNGER A S, CONWELL P R. Learning to learn using gradient descent[C]// International Conference on Artificial Neural Networks. 2001:87-94.
[17]WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition[C]// Proceedings of the 14th European Conference on Computer Vision. 2016:499-515.
[18]SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: A unified embedding for face recognition and clustering[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:815-823.
[19]HARWOOD B, KUMAR B G, CARNEIRO G, et al. Smart mining for deep metric learning[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017:2821-2829.
[20]ADENIYI D A, WEI Z, Yongquan Y. Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method[J]. Applied Computing and Informatics, 2016,12(1):90-108.
[21]MAYFIELD E, BLACK A W. Should you fine-tune BERT for automated essay scoring?[C]// Proceedings of the 15th Workshop on Innovative Use of NLP for Building Educational Applications. 2020:151-162.
[22]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556,2014.
[23]SUSMAGA R. Confusion matrix visualization[C]// Proceedings of International Conference on Intelligent Information Processing and Web Mining; Advances in Soft Computing. 2004:107-116.
|