[1] 左卫民. 关于法律人工智能在中国运用前景的若干思考[J]. 清华法学, 2018,12(2):108-124.
[2] 周万. 人工智能在司法裁判中的应用[D]. 武汉:武汉大学, 2018.
[3] 郭镔. 面向智慧检务的案件研判关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2018.
[4] 粟宇. 人工智能对国家司法能力建设的挑战与机遇[J]. 法制博览, 2019(27):209.
[5] 刘春梅. 人工智能在司法审判运用研究[D]. 上海:上海师范大学, 2019.
[6] 贺宇. 人工智能在司法审判实践中的应用及其限度[D]. 镇江:江苏大学, 2020.
[7] 刘宗林,张梅山,甄冉冉,等. 融入罪名关键词的法律判决预测多任务学习模型[J]. 清华大学学报(自然科学版), 2019,59(7):497-504.
[8] CHEN P H, LIN C J, SCHOLKOPF B. A tutorial on v-support vector machines[J]. Applied Stochastic Models in Business and Industry, 2005,21(2):111-136.
[9] SMOLA A J, SCHOLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004,14(3):199-222.
[10]DAVID SANCHEZ A V. Advanced support vector machines and kernel methods[J].Neurocomputing, 2003,55(1-2):5-20.
[11]LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:4768-4777.
[12]XIAO C J, ZHONG H X, GUO Z P, et al. CAIL2018: A large-scale legal dataset for judgment prediction[J]. arXiv preprint arXiv:1807.02478, 2018.
[13]石凤贵. 基于jieba中文分词的中文文本语料预处理模块实现[J]. 电脑知识与技术, 2020,16(14):248-251.
[14]MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013,2:3111-3119.
[15]MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
[16]GOLDBERG Y, LEVY O. Word2vec explained: Deriving Mikolov et al.s negative-sampling word-embedding method[J]. arXiv preprint arXiv:1402.3722, 2014.
[17]STATNIKOV A, ALIFERIS C F, HARDIN D P, et al. A Gentle Introduction to Support Vector Machines in Biomedicine[M]. World Scientific Publishing, 2011.
[18]RIBEIRO M T, SINGH S, GUESTRIN C. “Why should I trust you?”: Explaining the predictions of any classifier[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016:1135-1144.
[19]ZHONG H X, XIAO C J, TU C C, et al. How does NLP benefit legal system: A summary of legal artificial intelligence[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020:5218-5230.
[20]YANG W M, JIA W J, ZHOU X J, et al. Legal judgment prediction via multi-perspective bi-feedback network[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019:4085-4091.
[21]LI S, ZHANG H L, YE L, et al. Prison term prediction on criminal case description with deep learning[J]. Computers, Materials and Continua, 2020,62(3):1217-1231.
[22]SHAIKH R A, SAHU T P, ANAND V. Predicting outcomes of legal cases based on legal factors using classifiers[J]. Procedia Computer Science, 2020,167:2393-2402.
[23]ZHONG H X, GUO Z P, TU C C, et al. Legal judgment prediction via topological learning[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018:3540-3549.
[24]MOLNAR C. Interpretable Machine Learning[M]. Lulu Press, 2019.
[25]DOSHI-VELEZ F, KIM B. Towards a rigorous science of interpretable machine learning[J]. arXiv preprint arXiv:1702.08608, 2017.
[26]LIU X D, HE P C, CHEN W Z, et al. Multi-task deep neural networks for natural language understanding[J]. arXiv preprint arXiv:1901.11504, 2019.
[27]COLLOBERT R, WESTON J. A unified architecture for natural language processing: Deep neural networks with multitask learning[C]// Proceedings of the 25th International Conference on Machine Learning. 2008:160-167.
|