[1] CREEMERS C, GEERTS S, LEDDA A, et al. HEp-2 cell pattern segmentation for the support of autoimmune disease diagnosis[C]// Proceedings of the 4th International Symposium 〖JP4〗on Applied Sciences in Biomedical and Communication Technologies. 2011, Article No. 28, DOI: 10.1145/2093698.2093726.
[2] JIANG X Y, PERCANNELLA G, VENTO M. A verification-based multithreshold probing approach to HEp-2 cell segmentation[C]// Proceedings of the 16th International Conference on Computer Analysis of Images and Patterns. 2015:266-276.
[3] PERCANNELLA G, SODA P, VENTO M. A classification-based approach to segment HEp-2 cells[C]// Proceedings of the 25th IEEE International Symposium on Computer-Based 〖JP4〗Medical Systems. 2012, DOI: 10.1109/CBMS.2012.6266311.
[4] HUANG Y L, CHUNG C W, HSIEH T Y, et al. Outline detection for the HEp-2 cell in indirect immunofluorescence images using watershed segmentation[C]// Proceedings of the 2008 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing. 2008:423-427.
[5] CHENG C C, TAUR J S, HSIEH T Y, et al. Segmentation of anti-nuclear antibody images based on the watershed approach[C]// Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications. 2010:1695-1700.
[6] 李彦冬,郝宗波,雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016,36(9):2508-2515.
[7] FOGGIA P, PERCANNELLA G, SODA P, et al. Benchmarking HEp-2 cells classification methods[J]. IEEE Transactions on Medical Imaging, 2013,32(10):1878-1889.
[8] FOGGIA P, PERCANNELLA G, SAGGESE A, et al. Pattern recognition in stained HEp-2 cells: Where are we now?[J]. Pattern Recognition, 2014,47(7):2305-2314.
[9] HOBSON P, LOVELL B C, PERCANNELLA G, et al. Benchmarking human epithelial type 2 interphase cells classification methods on a very large dataset[J]. Artificial Intelligence in Medicine, 2015,65(3):239-250.
[10]SHEN L L, LIN J M, WU S Y, et al. HEp-2 image classification using intensity order pooling based features and bag of words[J]. Pattern Recognition, 2014,47(7):2419-2427.
[11]POMPONIU V, NEJATI H, CHEUNG N M. Deepmole: Deep neural networks for skin mole lesion classification[C]// Proceedings of the 2016 IEEE International Conference on Image Processing. 2016:2623-2627.
[12]ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017,542(7639):115-118.
[13]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012:1097-1105.
[14]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
[15]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[16]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[17]MANIVANNAN S, LI W Q, AKBAR S, et al. An automated pattern recognition system for classifying indirect immunofluorescence images of HEp-2 cells and specimens[J]. Pattern Recognition, 2016,51:12-26.
[18]谢欣,夏哲雷. 一种改进的残差网络宫颈癌细胞图像识别方法[J]. 中国计量大学学报, 2018,29(4):452-456.
[19]夏为为,夏哲雷,徐良,等. 基于残差神经网络的宫颈癌细胞识别的改进算法[J]. 电视技术, 2018,42(5):90-93.
[20]LEI H J, HAN T, HUANG W F, et al. Cross-modal transfer learning for HEp-2 cell classification based on deep residual network[C]// Proceedings of the 2017 IEEE International Symposium on Multimedia. 2017:465-468.
[21]杨云,张立泽清,齐勇. 结合优化U-Net和残差学习的细胞膜分割[J]. 计算机工程与设计, 2019,40(11):3313-3318.
[22]REDDY A S B, JULIET D S. Transfer learning with ResNet-50 for malaria cell-image classification[C]// Proceedings of the 2019 International Conference on Communication and Signal Processing. 2019:945-949.
[23]XIE H, HE Y J, LEI H J, et al. Deeply supervised residual network for HEp-2 cell classification[C]// Proceedings of the 24th International Conference on Pattern Recognition. 2018:699-703.
[24]娄润东,陈俊彪,侯宏花,等. 基于深度卷积神经网络的细胞分类新方法[J]. 测试技术学报, 2019,33(6):509-515.
|