[1] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]// Advances in Neural Information Processing Systems. 2017:1024-1034.
[2] FOUT A, BYRD J, SHARIAT B, et al. Protein interface prediction using graph convolutional networks[C]// Advances in Neural Information Processing Systems. 2017:6530-6539.
[3] SANCHEZ-GONZALEZ A, HEESS N, SPRINGENBERG J T, et al. Graph networks as learnable physics engines for inference and control[J]. Machine Learning, 2018:arXiv:1806.01242.
[4] LI C L, CUI Z, ZHENG W M, et al. Spatio-temporal graph convolution for skeleton based action recognition[J]. Computer Vision and Pattern Recognition, 2018:arXiv:1802.09834.
[5] HAMAGUCHI T, OIWA H, SHIMBO M, et al. Knowledge transfer for out-of-knowledge-base entities: A graph neural network approach[J]. Computation and Language, 2017:arXiv:1706.05674.
[6] ZHOU J, CUI G Q, ZHANG Z Y, et al. Graph neural networks: A review of methods and applications[J]. Machine Learning, 2018:arXiv:1812.08434.
[7] 黄河,邓浩江,陈君. 基于流量特征建模的网络异常行为检测技术[J]. 网络新媒体技术, 2019,8(4):11-20.
[8] 姜亚松,王冰,张艳,等. 基于社区结构的集体预测算法研究[J]. 网络新媒体技术, 2019,8(2):24-27.
[9] PAGE L, BRIN S, MOTWANI R, et al. The PageRank Citation Ranking: Bringing Order to the Web[R]. Stanford InfoLab, 1999.
[10]KLEINBERG J M. Hubs, authorities, and communities[J]. ACM Computing Surveys, 1999,31(4):5-7.
[11]KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. Machine Learning, 2016: arXiv:1609.02907.
[12]SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008,20(1):61-80.
[13]AHMED M S, COOK A R. Analysis of freeway traffic time-series data by using Box-Jenkins techniques[J]. Transportation Research Record, 1979(772):1-9.
[14]ZHU W T, LAN C L, XING J L, et al. Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016:3697-3703.
[15]DEY R, SALEMT F M. Gate-variants of gated recurrent unit (GRU) neural networks[C]// 2017 IEEE 60th International Midwest Symposium on Circuits and Systems. 2017:1597-1600.
[16]LV Y S, DUAN Y J, KANG W W, et al. Traffic flow prediction with big data: A deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(2):865-873.
[17]ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: A temporal graph convolutional network for traffic prediction[J]. Machine Learning, 2019:arXiv:1811.05320.
[18]李志帅,吕宜生,熊刚. 基于图卷积神经网络和注意力机制的短时交通流量预测[J]. 交通工程, 2019,19(4):15-19.
[19]GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2019,33:922-929.
[20]王斌,王亚云,盛津芳,等. 基于节点信任度的复杂网络关键节点识别[J]. 小型微型计算机系统, 2019,40(11):2337-2342.
[21]DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]// Advances in Neural Information Processing Systems. 2016:3844-3852.
[22]SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997,45(11):2673-2681.
[23]CHEN C, PETTY K, SKABARDONIS A, et al. Freeway performance measurement system: Mining loop detector data[J]. Transportation Research Record, 2001,1748(1):96-102.
|