[1] 候泳旭,段磊,李岭,等. 基于疾病信息网络的表型相似基因搜索[J]. 软件学报, 2018,29(3):721-733.
[2] ENRIC J D F, STANKOVA M, MOEYERSOMS J, et al. Corporate residence fraud detection[C]// ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2014:1650-1659.
[3] NANDA S, ZAFARI F, DECUSATIS C, et al. Predicting network attack patterns in SDN using machine learning approach[C]// Proceedings of 2017 IEEE International Conference on Network Function Virtualization and Software Defined Networks. 2017:167-172.
[4] ZHANG K, HUTTER M, JIN H. A new local distance-based outlier detection approach for scattered real-world data[C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2009:813-822.
[5] XU H L, MAO R, LIAO H, et al. Closest neighbors excluded outlier detection[C]// Proceedings of 2016 IEEE International Conference on Online Analysis and Computing Science. 2016:105-110.
[6] LIU J, WANG G Y. Outlier detection based on local minima density[C]// Proceedings of 2016 IEEE International Conference on Information Technology, Networking, Electronic and Automation Control. 2016:718-723.
[7] TANG B, HE H. A local density-based approach for outlier detection[J]. Neurocomputing, 2017,241:171-180.
[8] 刘露,左万利,彭涛. 异质网中基于张量表示的动态离群点检测方法[J]. 计算机研究与发展, 2016,53(8):1729-1739.
[9] LIU F, TING K M, ZHOU Z H. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012,6(1):1-39.
[10]PAULHEIM H, MEUSEL R. A decomposition of the outlier detection problem into a set of supervised learning problems[J]. Machine Learning, 2015,100(2-3):509-531.
[11]BENGIO Y, COURVILLE A, VINCENT P. Representation learning: A review and new perspectives[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012,35(8):1798-1828.
[12]KHODR J, YOUNES R. Dimensionality reduction on hyperspectral images: A comparative review based on artificial datas[C]// International Congress on Image & Signal Processing. 2011:1910-1918.
[13]AGGARWAL C C, SATHE S. Theoretical foundations and algorithms for outlier ensembles[J]. ACM SIGKDD Explorations Newsletter, 2015,17(1):24-47.
[14]ZIMEK A, GAUDET M, CAMPELLO R J G B, et al. Subsampling for efficient and effective unsupervised outlier detection ensembles[C]// ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2013:428-436.
[15]RAYANA S, ZHONG W, AKOGLU L. Sequential ensemble learning for outlier detection: A bias-variance perspective[C]// IEEE International Conference on Data Mining. 2016:1167-1172.
[16]PANG G S, CAO L B, CHEN L, et al. Sparse modeling-based sequential ensemble learning for effective outlier detection in high-dimensional numeric data[C]// The 32nd AAAI Conference on Artificial Intelligence. 2018.
[17]YANG B, HUANG B. KNN based outlier detection algorithm in large dataset[C]// International Workshop on Education Technology & Training. 2009:11-613.
[18]付培国,胡晓惠. 基于密度偏倚抽样的局部距离异常值检测方法[J]. 软件学报, 2017,28(10):2625-2639.
[19]BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying density-based local outliers[C]// ACM SIGKDD International Conference on Management of Data. 2000:93-104.
[20]KNORR E M, NG R T, TUCAKOV V. Distance-based outliers: Algorithms and applications[J]. The VLDB Journal, 2000,8(3):237-253.
[21]NGUYEN H V, ANG H H, GOPALKRISHNAN V. Mining outliers with ensemble of heterogeneous detectors on random subspaces[C]// Proceedings of International Conference on Database Systems for Advanced Applications. 2010:368-383.
[22]LI J, CHENG K, WANG S, et al. Feature selection: A data perspective[J]. ACM Computing Surveys, 2016,50(6):94:1-94:45.
[23]WU D F. A regression sequences based method for high dimensional outlier detection[J]. Journal of Discrete Mathematical Sciences and Cryptography, 2017,20(4):931-943.
[24]BREIMAN L. Bagging predictors[J]. Machine Learning, 1996,24(2):123-140.
[25]FREUND Y, SHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997,55(1):119-139.
[26]AGGARWAL C C. Outlier ensembles: Position paper[J]. ACM SIGKDD Explorations Newsletter, 2013,14(2):49-58.
[27]RAYANA S, AKOGLU L. Less is more: Building selective anomaly ensembles[J]. ACM Transactions on Knowledge Discovery from Data, 2016,10(4):1-33.
|