[1] HENDRICKS C, WILLIARD N, MATHEW S, et al. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries[J]. Journal of Power Sources, 2015,297:113-120.
[2] LIPU M S H, HANNAN M A, HUSSAIN A, et al. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations[J]. Journal of Cleaner Production, 2018,205:115-133.
[3] 于海芳,陈文帅. 锂离子动力电池寿命预测技术综述[J]. 电源技术, 2018,42(2):304-307.
[4] 张吉宣,贾建芳,曾建潮. 电动汽车供电系统锂电池剩余寿命预测[J]. 电子测量与仪器学报, 2018,32(3):60-66.
[5] XU B L, OUDALOV A, ULBIG A, et al. Modeling of lithium-ion battery degradation for cell life assessment[J]. IEEE Transactions on Smart Grid, 2018,9(2):1131-1140.
[6] 李丽敏,温宗周,宋玉琴. 基于IUPF的锂离子电池剩余使用寿命预测方法[J]. 计算机与现代化, 2018(7):77-81.
[7] LYU C, LAI Q Z, GE T F, et al. A lead-acid battery’s remaining useful life prediction by using electrochemical model in the Particle Filtering, framework[J]. Energy, 2017,120:975-984.
[8] ZHOU Y P, HUANG M H, CHEN Y P, et al. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction[J]. Journal of Power Sources, 2016,321:1-10.
[9] WU J, ZHANG C B, CHEN Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied Energy, 2016,173:134-140. 〖HJ1.4mm〗
[10]WU Y, LI W, WANG Y, et al. Remaining useful life prediction of lithium-ion batteries using neural network and bat-based particle filter[J]. IEEE Access, 2019,7:54843-54854.
[11]LIU D D, ZHOU J B, PAN D W, et al. Lithium-ion battery remaining useful life estimation with an optimized relevance vector machine algorithm with incremental learning[J]. Measurement, 2015,63:143-151.
[12]常纯,李德胜. 基于局部高斯过程的短期风速预测[J]. 计算机与现代化, 2017(1):13-16.
[13]徐彬泰,孟祥鹿,田安琪,等. 基于粒子群优化及高斯过程回归的铅酸电池荷电状态预测[J]. 南京理工大学学报, 2018,42(2):162-168.
[14]RICHARDSON R R, OSBORNE M A, HOWEY D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources, 2017,357:209-219.
[15]ORCHARD M E, LACALLE M S, OLIVARES B E, et al. Information-theoretic measures and sequential monte carlo methods for detection of regeneration phenomena in the degradation of lithium-ion battery cells[J]. IEEE Transactions on Reliability, 2015,64(2):701-709.
[16]YU J B. State of health prediction of lithium-ion batteries: Multiscale logic regression and gaussian process regression ensemble[J]. Reliability Engineering & System Safety, 2018,174:82-95.
[17]ZHOU Y P, HUANG M H. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics Reliability, 2016,65:265-273.
[18]ZHANG C L, HE Y G, YUAN L F, et al. Prognostics of lithium-ion batteries based on wavelet denoising and DE-RVM[J]. Computational Intelligence and Neuroscience, 2015:918305-918308.
[19]戚晓利,叶绪丹,蔡江林,等. 基于变分模态分解与流形学习的滚动轴承故障特征提取方法[J]. 振动与冲击, 2018,37(23):133-140.
[20]张淑清,宿新爽,陈荣飞,等. 基于变分模态分解和FABP的短期电力负荷预测[J]. 仪器仪表学报, 2018,39(4):67-73.
[21]宗文婷,卫志农,孙国强,等. 基于改进高斯过程回归模型的短期负荷区间预测[J]. 电力系统及其自动化学报, 2017,29(8):22-28.
[22]SAHA B, GOEBEL K. Battery Data Set[R]. NASA Ames Prognostics Data Repository, 2007. |