[1] 中国互联网络信息中心. 第42次中国互联网络发展状况统计报告[EB/OL].(2018-08-20)[2018-11-01]. http://www.cac.gov.cn/2018-08/20/c_1123296882.htm.
[2] 罗明,黄海量. 基于词汇-语义模式的金融事件信息抽取方法[J]. 计算机应用, 2018,38(1):84-90.
[3] 王高飞,李明. 我国网络舆情研究的回顾与研究[J]. 现代情报, 2016,36(5):172-173.
[4] 孙傲. 基于关键节点识别的社会网络信息传播规律可视化研究[D]. 哈尔滨:哈尔滨工业大学, 2018.
[5] CHA M, BENEVENUTOB F, AHN Y Y, et al. Delayed information cascades in Flickr: Measurement, analysis, and modeling[J]. Computer Networks, 2012,56(3):1065-1066.
[6] ZHANG J L. A summary of network public opinion information mining in China[J]. Information Science, 2016,34(11):167-169.
[7] LI Y X, WANG Z, FENG X, et al. Micro-blog hot-spot topic discovery based on real-time word co-occurrence network[J]. Journal of Computer Applications, 2016,36(5):1302-1306.
[8] 王平,谢耘耕. 突发公共事件网络舆情的形成及演变机制研究[J]. 中国传媒大学学报, 2013(3):63-69.
[9] 王静. 面向互联网舆情分析的海量数据检索模型关键技术研究[D]. 北京:首都师范大学, 2013.
[10]郭喜跃,何婷婷. 信息抽取研究综述[J]. 计算机科学, 2015,42(2):14-15.
[11]CHINCHOR N, MARSH E. MUC-7 Information Extraction Task Definition[EB/OL]. (1998-07-23)[2018-11-01]. https://www.cnblogs.com/hanpu0725/archive/2010/04/16/1713343.html.
[12]BANKO M, CAFARELL M J, SODERLAND S. Open information extraction from the Web[C]// Proceedings of the 20th International Joint Conference on Artifical Intelligence. ACM, 2007:2670-2676.
[13]BANKO M, ETZIONI O. The tradeoffs between open and traditional relation extraction[C]// Proceedings of Annual Meeting of the Association for Computational Lingustics. 2008:28-36.
[14]AL ZAMIL M G H, CAN A B. ROLEX-SP: Rules of lexical syntactic patterns for free text categorization[J]. Knowledge-Based Systems, 2011,24(1):58-65.
[15]HOGENBOOM F, FRASINCAR F, KAYMAK U, et al. A survey of event extraction methods from text for decision support systems[J]. Decision Support Systems, 2016,85:12-22.
[16]LIU X, GONG D. A comparative study of a star algorithms for search and rescue in perfect maze[C]// Proceedings of ICECICE. IEEE, 2011:24-27.
[17]韩忠明,吴杨,谭旭升,等. 面向结构洞的复杂网络关键节点排序[J]. 物理学报, 2015,64(5):421-429.
[18]徐颖. 基于贝叶斯推断的社交网络用户影响力研究[D]. 武汉:华中科技大学, 2016.
[19]张岚岚. 新浪微博的网络舆情分析研究——模型、设计与实验[D]. 上海:华东师范大学, 2011.
[20]孙立伟,何国辉,吴礼发. 网络爬虫技术的研究[J]. 电脑知识与技术, 2010,15(6):4112-4113.
[21]ZHAI D H, WANG J J, NIE H Y, et al. Research on bursty topic detection and hot word extraction based on mutual information[J]. Journal of Tibet University, 2013,28(1):82-87.
[22]梁喜涛,顾磊. 中文分词与词性标注研究[J]. 计算机技术与发展, 2015,25(2):175-176.
[23]曾依灵,许洪波,白硕. 网络文本主题词的提取与组织研究[J]. 中文信息学报, 2008,22(3):65-70. |