[1] Shou T D. Visual information processing in the brain mechanism[M]. Shanghai: Science & Technology Education Press, 1997:115-136.
[2] Allman J, Miezin F, McGuinness E. Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons[J].Annual Review Neuroscience, 1985,8:407-430.
[3] Heeger D J. Normalization of cell responses in cat striate cortex[J]. Vision Neuroscience, 1992,9(2):181-197.
[4] Wilson H R, Humanski R. Spatial frequency adaptation and contrast gain control[J]. Vision Research, 1993,33(8):1133-1149.
[5] Gilbert C D, Wiesel T N. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat [J]. Vision Research, 1990,30(11):1689-1701.
[6] Fitzpatrick D. Seeing beyond the receptive field in primary visual cortex[J]. Current Opinion Neurobiology, 2000,10(4):438-443.
[7] Sillito A M, Grieve K L, Jones H E, et al. Visual cortical mechanisms detecting local focal orientation discontinuities[J]. Nature, 1995,378:492-496.
[8] Wilson H R, Richards W A. Curvature and separation discrimination at texture boundaries[J]. Journal of the Optical Society of America, 1992,9(10):1653-1662.
[9] Krieger G, Zetzsch C. Nonlinear image operators for the evaluation of local intrinsic dimensionality[J]. IEEE Transactions on Image Processing, 1996,5(6):1026-1042.
[10]Knierim J, van Essen D C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey[J]. Journal of Neurophysiology, 1992,67(3):961-980.
[11]Li W, Li C Y. Extensive integration field beyond the classical receptive field of cats striate cortical neurons——classification and tuning properties[J]. Vision Research, 1994,34(18):2337-2355.
[12]Jones J P, Stepnoski A, Palmer L A. The two-dimensional spectral structure of simple receptive fields in cat striate cortex[J]. Journal of Neurophysiolgy, 1987,58(6):1212-1232.
[13]David S V, Gallant J L. Predicting neuronal responses during natural vision[J]. Network, 2005,16:239-260.
[14]龙力. 基于非经典感受野特性的轮廓检测算法研究[D]. 成都:电子科技大学, 2009.
[15]杨开富. 基于多视觉特征的非经典感受野模型及应用研究[D]. 成都:电子科技大学, 2012.
[16]窦燕,王柳锋,孔令富. 一种视皮层非经典感受野的模型[J]. 燕山大学学报, 2009,33(2):109-113.
[17]Grigorescu C, Petkov N, Westenberg M A. Contour detection based on nonclassical receptive field inhibition[J]. IEEE Transactions on Image Processing, 2003,12(7):729-739.
[18]Papari G, Campisi P, Petkov N, et al. A biologically motivated multiresolution approach to contour detection[J]. EURASIP Journal on Advanced in Signal Processing, 2007(1):119-119.
[19]桑农,唐奇伶,张天序. 基于初级视皮层抑制的轮廓检测方法[J]. 红外与毫米波学报, 2007,26(1):47-51.
[20]王晓梅. 基于非经典感受野机制的图像认知计算模型[D]. 上海:复旦大学, 2012.
[21]郎波. 基于非经典感受野的图像表征计算模型的研究与实现[D]. 上海:复旦大学, 2013.
[22]Wei Hui, Lang Bo, Zou Qingsong. An Image representation of infrastructure based on non-classical receptive field[J]. Soft Computing, 2014,18(1):109-123.
[23]Yang Xiongli, Gao Fan, Wu S M. Modulation of horizontal cell function by GABA(A) and GABA(C) receptors in dark-and light-adapted tiger salamander retina[J]. Vision Neuroscience, 1999,16(5):967-979.
[24]Qiu Fangtu, Li Cuihua. Mathematical simulation of disinhibitory properties of concentric receptive field[J]. Acta Biophysica Sinica, 1995,11(2):214-220.
[25]Janelle J, Jennifer Mi, Frederick F, et al. Anatomical evidence for classical and extra-classical receptive field completion across the discontinuous horizontal meridian representation of primate area V2[J]. Cerebral Cortex, 2009,19(4):963-981.
[26]Linster C, Hasselmo M E. Neuromodulation and the functional dynamics of piriform cortex[J]. Chemical Senses, 2001,26(5):585-594.
[27]Ghosh K, Sarkar S, Bhaumik K. A possible explanation of the low-level brightness-contrast illusions in the light of an extended classical receptive field model of retinal ganglion cells[J]. Biological Cybernetics, 2006,94(2):89-96.
[28]Shi J B, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8):888-905. |