计算机与现代化 ›› 2015, Vol. 0 ›› Issue (3): 37-40,47.doi: 10.3969/j.issn.1006-2475.2015.03.008

• 算法设计与分析 • 上一篇    下一篇

基于优化欧氏距离的协同过滤推荐

  

  1. 榆林学院信息工程学院,陕西榆林719000
  • 收稿日期:2014-11-26 出版日期:2015-03-23 发布日期:2015-03-26
  • 作者简介:陈小辉(1979-),男,河南伊川人,榆林学院信息工程学院讲师,硕士,研究方向:网络安全和数据挖掘; 高燕(1979-),女,陕西榆林人,讲师,硕士,研究方向:云计算和无线移动通信。

Collaborative Filtering Recommendation Based on Optimization Euclidean Distance

  1. Information Engineering School, Yulin University, Yulin 719000, China
  • Received:2014-11-26 Online:2015-03-23 Published:2015-03-26

摘要: 由于推荐系统中用户对项目的评价数据具有多样性和稀疏性的特点,传统的相似性度量算法不能有效查找相似邻居,本文提出一种基于优化欧氏距离的邻居相似度计算方法,在欧氏距离计算的基础上引入归一化处理和杰卡德相似系数,并最终作出评价预测和推荐。在典型数据集上的实验结果显示该算法能够有效提高协同过滤推荐系统的推荐性能。

关键词: 协同过滤, 欧氏距离, 归一化, 杰卡德相似系数

Abstract: User evaluation data of items often are of the biodiversity and sparse characteristic in collaborative filtering recommendation system, the traditional similarity measurement algorithm cannot effectively find similar neighbors, this paper proposed a neighbor similarity computing algorithm based on optimized Euclidean distance. The algorithm introduced normalization and Jaccard similarity coefficient based on Euclidean distance calculation, and finally made the evaluation prediction and recommendation. The experiments result on typical dataset show that the algorithm can effectively improve the performance of collaborative filtering recommendation system.

Key words: collaborative filtering, Euclidean distance, normalized, Jaccard similarity coefficient

中图分类号: