计算机与现代化 ›› 2013, Vol. 1 ›› Issue (9): 82-85,9.doi: 10.3969/j.issn.1006-2475.2013.09.020

• 图像处理 • 上一篇    下一篇

基于MLBPH-FF和SVM的驾驶员疲劳检测

赵李坤1,蒋新华1,杨海燕1,2   

  1. 1.中南大学信息科学与工程学院,湖南 长沙 410083;2.福建工程学院计算机与信息科学系,福建 福州 350108
  • 收稿日期:2013-04-17 修回日期:1900-01-01 出版日期:2013-09-17 发布日期:2013-09-17

Driver Fatigue Detection Based on Multi-scale Local Binary Pattern Histogram Fourier Feature and Support Vector Machine

ZHAO Li-kun1, JIANG Xin-hua1, YANG Hai-yan1,2   

  1. 1. School of Information Science and Engineering, Central South University, Changsha 410083, China;2. Department of Computer and Information Science, Fujian University of Technology, Fuzhou 350108, China
  • Received:2013-04-17 Revised:1900-01-01 Online:2013-09-17 Published:2013-09-17

摘要: 针对疲劳检测技术中驾驶员头部姿势变化影响图像检测效果的问题,提出一种基于多尺度LBPH傅里叶特征(MLBPH-FF)和支持向量机(SVM)的驾驶员疲劳检测方法。该方法分为训练和识别两个阶段:训练时,首先对从视频流中捕获的驾驶员人脸疲劳和非疲劳图像进行特征提取,即用不同半径的规范LBP算子计算得到多尺度的LBPH,然后拼接这些LBPH并进行傅里叶变换得到MLBPH-FF,最后把这些特征数据输入到SVM中进行训练得到SVM的模型及参数;在识别时,首先计算出待测图像样本的MLBPH-FF,然后输入到训练好的SVM中进行疲劳检测。实验结果表明,这种方法在疲劳检测方面有较好的识别率,对姿态和光照变化有较强的鲁棒性。

关键词: 疲劳检测, MLBPH-FF, SVM

Abstract: In order to reduce the image detection effect from the changes of the driver’s position in the driver fatigue detection, a driver fatigue detection method is proposed based on multi-scale local binary pattern histogram Fourier feature (MLBPH-FF) and support vector machine (SVM). The method includes two processes which are training and recognition. During training, we firstly extract the features of the driver’s facial fatigue and non-fatigue images captured from video stream, calculate and get the MLBP histogram (MLBPH) using different scales of the uniform local binary pattern (LBP) operators, then combine them and use discrete Fourier transform to get the MLBPH-FF. At last, we input these features data to the SVM and train them to get its model and parameters. During recognition, we calculate the MLBPH-FF of the testing image samples, then input these MLBPH-FF to the trained SVM to detect fatigue. The experimental result shows that this method is of better identification rate on fatigue detection and performs stably and robustly on different illuminations and poses.

Key words: fatigue detection, MLBPH-FF, SVM

中图分类号: