Quantum Identity Authentication Protocol Based on Quantum Secure Direct Communication
(1. State Grid Anhui Electric Power Co., Ltd., Hefei 230009, China; 2. Electric Power Science Research Institute of State Grid Anhui Electric Power Co., Ltd., Hefei 230601, China; 3. Nanjing Nanrui Information and Communication Technology Co., Ltd., Nanjing 211100, China)
WANG Song1, LI Yuanzhi2, CHEN Wei1, BIAN Yuxiang3. Quantum Identity Authentication Protocol Based on Quantum Secure Direct Communication[J]. Computer and Modernization, 2025, 0(09): 50-54.
[1] ZHOU N R, ZENG G H, ZENG W J, et al. Cross-center quantum identification scheme based on teleportation and entanglement swapping[J]. Optics Communications, 2005,254(4-6):380-388.
[2] AZAHARI N S B, HARUN N Z B, ZULKARNAIN Z B A. Quantum identity authentication for non-entanglement multiparty communication: A review, state of art and future directions[J]. ICT Express, 2023,9(4):534-547.
[3] ZAWADZKI P. Quantum identity authentication without entanglement[J]. Quantum Information Processing, 2019,18(1). DOI: 10.1007/s11128-018-2124-2.
[4] ZHOU R G, HUO M Y, HU W W, et al. Dynamic multiparty quantum secret sharing with a trusted party based on generalized GHZ state[J]. IEEE Access, 2021,9:22986-22995.
[5] YADAV P, SRIKANTH R, PATHAK A. Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique[J]. Quantum Information Processing, 2014,13:2731-2743.
[6] BANERJEE A, PATHAK A. Maximally efficient protocols for direct secure quantum communication[J]. Physics Letters A, 2012,376(45):2944-2950.
[7] LEE H, LIM J, YANG H J. Quantum direct communication with authentication[J]. Physical Review A, 2006,73(4). DOI: 10.1103/PhysRevA.73.042305.
[8] ZHANG Z S, ZENG G H, ZHOU N R, et al. Quantum identity authentication based on ping-pong technique for photons[J]. Physics Letters A, 2006,356(3):199-205.
[9] LIU D, PEI C X, QUAN D X, et al. A new quantum secure direct communication scheme with authentication[J]. Chinese Physics Letters, 2010,27(5). DOI: 10.1088/0256
-307X/27/5/050306.
[10] YANG Y G, TIAN J, XIA J, et al. Quantum authenticated direct communication using Bell states[J]. International Journal of Theoretical Physics, 2013,52:336-344.
[11] LIU B, GAO Z F, XIAO D, et al. Quantum identity authentication in the counterfactual quantum key distribution protocol[J]. Entropy, 2019,21(5). DOI: 10.3390/e21050518.
[12] ZHU H F, WANG L W, ZHANG Y L. An efficient quantum identity authentication key agreement protocol without entanglement[J]. Quantum Information Processing, 2020,19. DOI: 10.1007/s11128-020-02887-z.
[13] PAN D, LONG G L, YIN L G, et al. The evolution of quantum secure direct communication: On the road to the Qinternet[J]. IEEE Communications Surveys & Tutorials, 2024,26(3):1898-1949.
[14] GONZÁLEZ-GUILLÉN C E, GONZÁLEZ VASCO M I, JOHNSON F, et al. An attack on Zawadzki’s quantum authentication scheme[J]. Entropy, 2021,23(4). DOI: 10.3390/
e23040389.
[15] KUO S Y, TSENG K C, YANG C C, et al. Efficient multiparty quantum secret sharing based on a novel structure and single qubits[J]. EPJ Quantum Technology, 2023,10(1). DOI: 10.1140/epjqt/s40507-023-00186-x.
[16] SHAN R T, CHEN X B, YUAN K G. Multi-party blind quantum computation protocol with mutual authentication in network[J]. Science China Information Sciences, 2021,64. DOI: 10.1007/s11432-020-2977-x.
[17] ROY P, BERA S, GUPTA S, et al. Device-independent quantum secure direct communication under non-Markovian quantum channels[J]. Quantum Information Processing, 2024,23(5). DOI: 10.1007/s11128-024-04397-8.
[18] DAS N, PAUL G, MAJUMDAR R. Quantum secure direct communication with mutual authentication using a single basis[J]. International Journal of Theoretical Physics, 2021,60:4044-4065.
[19] KANG M S, HEO J, HONG C H, et al. Controlled mutual quantum entity authentication with an untrusted third party[J]. Quantum Information Processing, 2018,17(7). DOI: 10.1007/s11128-018-1927-5.
[20] CEDERLOF J, LARSSON J Å. Security aspects of the authentication used in quantum cryptography[J]. IEEE Transactions on Information Theory, 2008,54(4):1735-1741.
[21] HWANG W Y. Quantum key distribution with high loss: Toward global secure communication[J]. Physical Review Letters, 2003,91(5). DOI: 0.1103/PhysRevLett.91.057901.
[22] ZHAO Y, QI B, MA X F, et al. Experimental quantum key distribution with decoy states[J]. Physical Review Letters, 2006,96(7). DOI: 10.1103/PhysRevLett.96.070502.
[23] SAXENA A, THAPLIYAL K, PATHAK A. Continuous variable controlled quantum dialogue and secure multiparty quantum computation[J]. International Journal of Quantum Information, 2020,18(4). DOI: 10.1142/S0219749920500094.
[24] BENNETT C H, BRASSARD G. Quantum cryptography: Public key distribution and coin tossing[J]. Theoretical Computer Science, 2014,560:7-11.
[25] WANG L J, ZHANG K Y, WANG J Y, et al. Experimental authentication of quantum key distribution with post-quantum cryptography[J]. NPJ Quantum Information, 2021,7(1). DOI: 10.1038/s41534-021-00400-7.
[26] ZHA X W, YUAN C Z, ZHANG Y P. Generalized criterion for a maximally multi-qubit entangled state[J]. Laser Physics Letters, 2013,10(4). DOI: 10.1088/1612-2011/10/4/045201.
[27] LVOVSKY A I, SANDERS B C, TITTEL W. Optical quantum memory[J]. Nature Photonics, 2009,3(12):706-714.
[28] HESHAMI K, ENGLAND D G, HUMPHREYS P C, et al. Quantum memories: Emerging applications and recent advances[J]. Journal of Modern Optics, 2016,63(20):2005-2028.
[29] CHANG Y, ZHANG S B, YAN L L, et al. Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state[J]. Chinese Physics B, 2015, 24(5). DOI: 1088/1674-1056/24/5/050307.
[30] CABELLO A. Quantum key distribution in the Holevo limit[J]. Physical Review Letters, 2000,85(26). DOI: 10.1103/
PhysRevLett.85.5635.
[31] BARNUM H, CRÉPEAU C, GOTTESMAN D, et al. Authentication of quantum messages[C]// The 43rd Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2002:449-458.