DENG Yuyan, HE Yueshun, HE Linlin, CHEN Jie, LI Juan, ZOU Zhiyi. SE-BCNN with Feature Recalibration for Fine-grained Conodont Identification[J]. Computer and Modernization, 2025, 0(05): 117-121.
[1] DONOGHUE P C J, FOREY P L, ALDRIDGE R J. Conodont affinity and chordate phylogeny[J]. Biological Reviews of the Cambridge Philosophical Society, 2000,75(2):191-251.
[2] 王志浩,祁玉平. 我国北方石炭—二叠系牙形刺序列再认识[J]. 微体古生物学报, 2003(3):225-243.
[3] BERGSTRÖM S M, FERRETTI A. Conodonts in Ordovician biostratigraphy[J]. Lethaia, 2017,50(3):424-439.
[4] 王志浩,周天荣. 塔里木西部与东北部奥陶系的牙形刺及其意义[J]. 古生物报, 1998(2):39-40.
[5] 马冬晨,陈中阳,张虹瑞,等. 新疆顺北油田和塔河油田中—上奥陶统牙形刺生物地层[J]. 微体古生物学报, 2021,38(2):149-163.
[6] 陈思尧,孙勇,李有波,等. 西昆仑甜水海地区晚石炭世孢粉及牙形刺化石的发现及意义[J]. 地层学杂志, 2022,46(1):60-67.
[7] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
[8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E, et al. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
[9] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[10] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2015. DOI: 10.1109/CVPR.2015.7298594.
[11] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,2016:770-778.
[12] 刘曦阳. 图像识别技术在古生物化石图像上的应用[D]. 长春:吉林大学, 2018.
[13] 柳博文,刘星. 多尺度卷积神经网络模型优化在矿物识别中的应用[J]. 矿物岩石, 2023,43(3):10-19.
[14] 李炳臻,刘克,顾佼佼,等. 卷积神经网络研究综述[J]. 计算机时代,2021(4):8-12.
[15] 张放,熊志东,马冬晨. 牙形石分析鉴定方法[M]. 北京:石油工业出版社, 2010:1-18.
[16] LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]// 2015 IEEE International Conference on Computer Vision(ICCV). IEEE, 2015:1449-1457.
[17] LIU W Y, WEN Y D, YU Z D, et al. Large-margin Softmax loss for convolutional neural networks[C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning(ICML’16). ACM, 2016,48:507-516.
[18] 何淑林. 基于Bilinear CNN的害虫分类设计与实现[D]. 哈尔滨:黑龙江大学, 2023.
[19] 钱露露. 细粒度图像分类技术的算法研究[D]. 苏州:苏州大学, 2023.
[20] 张珂,冯晓晗,郭玉荣,等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021,26(10):2305-2325.
[21] 杜蓉. 基于深度学习的细粒度图像分类研究[D]. 兰州:西北师范大学, 2023.
[22] 罗建豪,吴建鑫. 基于深度卷积特征的细粒度图像分类研究综述[J]. 自动化学报, 2017,43(8):1306-1318.
[23] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018:7132-7141.
[24] 蒋昂波,王维维. ReLU激活函数优化研究[J]. 传感器与微系统, 2018,37(2):50-52.
[25] 段雄. 应用卷积神经网络分类的Hindeodus牙形刺细粒度数据集[J]. 中国科学数据(中英文网络版), 2023,8(2):315-328.
[26] HUANG E H,SOCHER R,MANNING C D,et al. Improving wordrepresentations via global context and multiple word prototypes[C]// Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics(ACL’12). ACL, 2012:873-882.
[27] TAN M, LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[C]// Proceedings of the 36th International Conference on Machine Learning. IMLS, 2019,97:6105-6114.
[28] ALEXANDRESCU A,KIRCHHOFF K. Factored neural language models[C]// Proceedings of the Human Language Technology Conference of the NAACL. ACM, 2006:1-4.