Computer and Modernization ›› 2025, Vol. 0 ›› Issue (03): 29-37.doi: 10.3969/j.issn.1006-2475.2025.03.005
Previous Articles Next Articles
Online:
2025-03-28
Published:
2025-03-28
CLC Number:
LEI Jiyue, SU Peng, NIE Yun, LIN Chuan. Review of Large Language Model Question Answering Systems for International Event Analysis[J]. Computer and Modernization, 2025, 0(03): 29-37.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.c-a-m.org.cn/EN/10.3969/j.issn.1006-2475.2025.03.005
[1] QIU X P, SUN T X, XU Y G, et al. Pre-trained models for natural language processing: A survey[J]. Science China Technological Sciences, 2020,63(10):1872-1897. [2] SU J, JIANG C F, JIN X, et al. Large Language Models for Forecasting and Anomaly Detection: A Systematic Literature Review[EB/OL]. (2024-02-20)[2024-04-26]. https://arxiv.org/abs/2402.10350. [3] ZHOU H, YIN H P, ZHENG H Y, et al. A survey on multi-modal social event detection[J]. Knowledge-Based Systems, 2020,195(3). DOI: 10.1016/j.knosys.2020.105695. [4] JI S X, PAN S R, CAMBRIA E, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,33(2):494-514. [5] 张亚明,宋雯婕,刘海鸥,等. 学科交叉视域下国际舆论场突发公共卫生事件网络舆情传播研究综述[J]. 现代情报, 2023,43(4):165-176. [6] 庞珣. 国际关系研究的定量方法:定义、规则与操作[J]. 世界经济与政治, 2014(1):5-25. [7] 张雪. 事件数据库在国际关系研究中的应用[D]. 北京:外交学院, 2023. [8] 卢凌宇,张传基. 浅析国际政治大数据预测的限度[J]. 欧洲研究, 2021,39(4):130-154. [9] LEISEROWITZ A. International public opinion, perception, and understanding of global climate change[J]. Human development report, 2007,2008(2007):31-70. [10] LIPPERT T H, LIPPERT T H. Taking stock of the situation: NATO[M]// NATO, Climate Change, and International Security. 2019:47-79. [11] GORDON J, VAN DURME B, SCHUBERT L K. Learning from the Web: Extracting general world knowledge from noisy text[C]// Proceedings of the 2nd AAAI Conference on Collaboratively-built Knowledge Sources and Artificial Intelligence. AAAI, 2010:10-15. [12] CHEN X, ZHOU X M, SELLIS T, et al. Social event detection with retweeting behavior correlation[J]. Expert Systems with Applications, 2018,114:516-523. [13] CHAMBERS N, JURAFSKY D. Unsupervised learning of narrative event chains[C]// Proceedings of ACL-08: HLT. ACL, 2008:789-797. [14] GALLA D, BURKE J. Predicting social unrest using GDELT[C]// International Conference on Machine Learning and Data Mining in Pattern Recognition. Springer, 2018:103-116. [15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017,30:5998-6008. [16] KENTON J D M W C, TOUTANOVA L K. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of NAACL-HLT. ACL, 2019:4171-4186. [17] YANG S, FENG D W, QIAO L B, et al. Exploring pre-trained language models for event extraction and generation[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. ACL, 2019:5284-5294. [18] DU X, CARDIE C. Document-level event role filler extraction using multi-granularity contextualized encoding[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. ACL, 2020:8010-8020. [19] DING L, CHEN X J, WEI J, et al. Mabert: Mask-attention-based Bert for Chinese event extraction[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2023,22(7):1-21. [20] JENKINS C, AGARWAL S, BARRY J, et al. Massively multi-lingual event understanding: Extraction, visualization, and search[C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. ACL, 2023:247-256. [21] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in Neural Information Processing Systems, 2020,33:1877-1901. [22] LIU F. Learning to summarize from human feedback[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. ACL, 2020:1934-1945. [23] XIAN Y, SCHIELE B, AKATA Z. Zero-shot learning-the good, the bad and the ugly[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:4582-4591. [24] HU D Q, LIU B, ZHU X F, et al. Zero-shot information extraction from radiological reports using ChatGPT[J]. International Journal of Medical Informatics, 2024,183:105321. [25] TAVENARD R, FAOUZI J, VANDEWIELE G, et al. Tslearn, a machine learning toolkit for time series data[J]. Journal of Machine Learning Research, 2020,21(118):1-6. [26] ZHU C C, CHEN M H, FAN C J, et al. Learning from history: Modeling temporal knowledge graphs with sequential copy-generation networks[J]. AAAI Conference on Artificial Intelligence, 2021,35(5):4732-4740. [27] SHI X M, XUE S Q, WANG K R, et al. Language models can improve event prediction by few-shot abductive reasoning[J]. Advances in Neural Information Processing Systems, 2024,36:1-26. [28] ZHANG L, JIJO K, SETTY S, et al. Enhancing Large Language Model Performance To Answer Questions and Extract Information More Accurately[EB/OL]. (2024-02-01)[2024-04-26]. https://arxiv.org/abs/2402.01722. [29] LINEGAR M, KOCIELNIK R, ALVAREZ R M. Large language models and political science[J]. Frontiers in Political Science, 2023,5:1257092. [30] ABID A, FAROOQI M, ZOU J. Persistent anti-muslim bias in large language models[C]// Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. ACM, 2021:298-306. [31] KENTHAPADI K, LAKKARAJU H, RAJANI N. Generative AI meets responsible AI: Practical challenges and opportunities[C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 2023:5805-5806. [32] KUKREJA S, KUMAR T, PUROHIT A, et al. A literature survey on open source large language models[C]// Proceedings of the 2024 7th International Conference on Computers in Management and Business. IEEE, 2024:133-143. [33] GURURANGAN S, MARASOVIĆ A, SWAYAMDIPTA S, et al. Don’t stop pretraining: Adapt language models to domains and tasks[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. ACL, 2020:8342-8360. [34] WU S, IRSOY O, LU S, et al. Bloomberggpt: A Large Language Model for Finance[EB/OL]. (2023-03-14)[2024-04-26]. https://arxiv.org/abs/2303.17564. [35] SMITH J S, KARLINSKY L, GUTTA V, et al. Coda-prompt: Continual decomposed attention-based prompting for rehearsal-free continual learning[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2023:11909-11919. [36] LIU M, ENE T D, KIRBY R, et al. Chipnemo: Domain-adapted ll ms for Chip Design[EB/OL]. (2023-10-30)[2024-04-26]. https://arxiv.org/abs/2311.00176. [37] NGUYEN H T. A Brief Report on Lawgpt 1.0: A Virtual Legal Assistant Based on GPT-3[EB/OL]. (2023-02-10)[2024-04-26]. https://arxiv.org/abs/2302.05729. [38] YANG S H, ZHAO H J, ZHU S B, et al. Zhongjing: Enhancing the Chinese Medical Capabilities of Large Language Model Through Expert Feedback and Real-world Multi-Turn Dialogue[EB/OL]. (2023-08-07)[2024-04-26]. https://arxiv.org/abs/2308.03549. [39] ZHANG X Y, YANG Q, XU D H. Xuanyuan 2.0: A large chinese financial chat model with hundreds of billions parameters[C]// Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. ACM, 2023:4435-4439. [40] YANG H R, ZHANG Y M, XU J Q, et al. Unveiling the generalization power of fine-tuned large language models[C]// Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. ACL, 2024:884-899. [41] LIU H, TAM D, MUQEETH M, et al. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning[J]. Advances in Neural Information Processing Systems, 2022,35:1950-1965. [42] LI X L, LIANG P. Prefix-tuning: Optimizing continuous prompts for generation[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. ACL, 2021:4582-4597. [43] HE R D, LIU L L, YE H, et al. On the effectiveness of adapter-based tuning for pretrained language model adaptation[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. ACL, 2021:2208-2222. [44] HU E J, WALLIS P, ALLEN-ZHU Z, et al. LoRA: Low-rank adaptation of large language models[C]// Proceedings of International Conference on Learning Representations. Springer, 2021:1-13. [45] DU Z X, QIAN Y J, LIU X, et al. GLM: General language model pretraining with autoregressive blank infilling[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. ACL, 2022:320-335. [46] TOUVRON H, LAVRIL T, IZACARD G, et al. Llama: Open and Efficient Foundation Language Models[EB/OL]. (2023-02-27)[2024-04-26]. https://arxiv.org/abs/2302. 13971. [47] YANG A Y, XIAO B, WANG B N, et al. Baichuan 2: Open Large-scale Language Models[EB/OL]. (2023-09-18)[2024-04-26]. https://arxiv.org/abs/2309.10305. [48] BAI J Z, BAI S, CHU Y F, et al. Qwen Technical Report[EB/OL]. (2023-09-28)[2024-04-26]. https://arxiv.org/abs/2309.16609. [49] TEAM I L M. Internlm: A Multilingual Language Model with Progressively Enhanced Capabilities[EB/OL]. (2023-01-06)[2024-04-26]. https://github.com/InternLM/InternLM. [50] THIRUNAVUKARASU A J, TING D S J, ELANGOVAN K, et al. Large language models in medicine[J]. Nature Medicine, 2023,29(8):1930-1940. [51] CUI J X, LI Z J, YAN Y, et al. Chatlaw: Open-source Legal Large Language Model with Integrated External Knowledge Bases[EB/OL]. (2023-06-28)[2024-04-26]. https: //arxiv.org/abs/2306.16092. [52] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[J]. Advances in Neural Information Processing Systems, 2020,33:9459-9474. [53] SIRIWARDHANA S, WEERASEKERA R, WEN E, et al. Improving the domain adaptation of retrieval augmented generation (RAG) models for open domain question answering[J]. Transactions of the Association for Computational Linguistics, 2023,11:1-17. [54] TOPSAKAL O, AKINCI T C. Creating large language model applications utilizing langchain: A primer on developing ll m APPs fast[C]// International Conference on Applied Engineering and Natural Sciences. IEEE, 2023:1050-1056. [55] LEETARU K, SCHRODT P A. GDELT: Global data on events, location, and tone, 1979-2012[J]. Citeseer, 2013,2(4):1-49. [56] SHILLIDAY A, LAUTENSCHLAGER J. Data for a worldwide ICEWS and ongoing research[C]// Advances in Design for Cross-Cultural Activities. ACM, 2012:455. [57] RALEIGH C, LINKE R, HEGRE H, et al. Introducing ACLED: An armed conflict location and event dataset[J]. Journal of Peace Research, 2010,47(5):651-660. [58] SUNDBERG R, MELANDER E. Introducing the UCDP georeferenced event dataset[J]. Journal of Peace Research, 2013,50(4):523-532. [59] LAFREE G. The global terrorism database (GTD) accomplishments and challenges[J]. Perspectives on Terrorism, 2010,4(1):24-46. [60] HOFFMANN J, BORGEAUD S, MENSCH A, et al. An empirical analysis of compute-optimal large language model training[J]. Advances in Neural Information Processing Systems, 2022,35:30016-30030. |
[1] | HOU Menghan, WEI Changfa. Construction of Depression Recognition Model Based on Multi-Feature Fusion [J]. Computer and Modernization, 2025, 0(03): 1-5. |
[2] | TANG Rui1, WU Jianchao1, CHEN Jianbo1, CHAI Jiang1, WANG Qian1, HE Yuchen2. Improved YOLOv8s Algorithm Based on GiraffeDet for Transmission Line Icing Detection [J]. Computer and Modernization, 2025, 0(03): 6-11. |
[3] | CAO Lu, DING Cangfeng, MA Lerong, YAN Zhaoyao, YOU Hao. Multilevel Joint Graph Embedding for Lipophilic Molecular Classification [J]. Computer and Modernization, 2025, 0(03): 12-21. |
[4] | WANG Zeyu, HAN Jianning, HAO Guodong, YANG Run. Speech Enhancement Algorithm Based on Parallel Cascaded Time-frequency Conformer Generative Adversarial Network [J]. Computer and Modernization, 2025, 0(03): 22-28. |
[5] | ZHANG Jiaxu, LIU Xiaoyang, HONG Shengcheng, SHENG Yifan, WANG Mingyang. Method for Underwater Robot Cage Inspection Control Based on Model Predictive Control [J]. Computer and Modernization, 2025, 0(03): 38-44. |
[6] | PU Yaya, WANG Yanbo, SU Yongdong, XU Zhongcheng. Multi-scale Feature Image Defogging Algorithm Based on Content-guided Attention Fusion [J]. Computer and Modernization, 2025, 0(03): 78-85. |
[7] | ZHU Yongtian, TIAN Fei, DONG Baoliang. Ultrasonic Image Segmentation of Thyroid Nodules Based on HA-UNet++ [J]. Computer and Modernization, 2025, 0(03): 93-98. |
[8] | XIE Haiqing, LING Jiaqi, YI Xinbo. Tongue Constitution Classification Method Based on Deep Learning [J]. Computer and Modernization, 2025, 0(03): 99-105. |
[9] | LIU Yaokai, REN Dejun, LIU Chongyi, LU Yudong. AMDFF-Net: Adaptive Multi-dimensional Feature Fusion Network for Tiny Object Detection [J]. Computer and Modernization, 2025, 0(03): 106-112. |
[10] | ZHANG Yue, GUO Zixin, HUANG Yibin, YAN Tao. Network Intrusion Detection Method Based on Convolutional Neural Networks with convLSTM [J]. Computer and Modernization, 2025, 0(03): 119-126. |
[11] | LI Ang1, DU Mengjun1, QIAN Jin1, TONG Jun1, YANG Tao1 CHEN Guotao1, JIN Wenxing2. A Novel Communication Data Fusion Method for Power Systems Based on Multimodal Graph Convolutional Networks [J]. Computer and Modernization, 2025, 0(02): 64-69. |
[12] | HE Guotao1, ZHAO Chunhui2, LIU Zhenyu1, WANG Long1. Optimization for Camera Self-calibration Based on Horizon Detection in Road Scenes [J]. Computer and Modernization, 2025, 0(02): 77-85. |
[13] | ZHAO Yin, YIN Siqing, ZHANG Yonglai. Improved Traffic Sign Detection Algorithm of YOLOv7 [J]. Computer and Modernization, 2025, 0(02): 94-99. |
[14] | YAN Qiang1, SHEN Shouting2, BAI Junqing2, CHENG Guojian2. Video Rain Removal Algorithm Based on Deep Learning [J]. Computer and Modernization, 2025, 0(02): 100-107. |
[15] | HE Feixiong1, XIE Haiwei1, PU Chao2, ZOU Chuanming2, JIA Yixuan1. A New Method of Pavement Disease Detection Based on Improved YOLOv8 [J]. Computer and Modernization, 2025, 0(02): 108-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||