[1] SUN J, SHANG Z M, LI H. Imbalance-oriented SVM methods for financial distress prediction: A comparative study among the new SB-SVM-ensemble method and traditional methods[J]. Journal of the Operational Research Society, 2014,65(12):1905-1919.
[2] BENCHAJI I, DOUZI S, EL OUAHIDI B. Using genetic algorithm to improve classification of imbalanced datasets for credit card fraud detection[C]// Proceedings of the International Conference on Advanced Information Technology, Services and Systems (AIT2S-18). Springer, 2019:220-229.
[3] BAGUI S, LI K Q. Resampling imbalanced data for network intrusion detection datasets[J]. Journal of Big Data, 2021,8(1). DOI: 10.1186/s40537-020-00390-x.
[4] SAHOO S R, GUPTA B B. Classification of spammer and nonspammer content in online social network using genetic algorithm-based feature selection[J]. Enterprise Information Systems, 2020,14(5):710-736.
[5] LI X J, LI S C, LI J, et al. Detection of fake-video uploaders on social media using Naive Bayesian model with social cues[J]. Scientific Reports, 2021,11(1). DOI: 10.1038/s41598-021-95514-5.
[6] HUANG C X, HUANG X, FANG Y, et al. Sample imbalance disease classification model based on association rule feature selection[J]. Pattern Recognition Letters, 2020,133:280-286.
[7] REZAEI M, YANG H J, MEINEL C. Recurrent generative adversarial network for learning imbalanced medical image semantic segmentation[J]. Multimedia Tools and Applications, 2020,79(21-22):15329-15348.
[8] MAHMUDAH K R, PURNAMA B, INDRIANI F, et al. Machine learning algorithms for predicting chronic obstructive pulmonary disease from gene expression data with class imbalance[C]// 12th International Conference on Bioinformatics Models, Methods and Algorithms. INSTICC, 2021:148-153.
[9] 苏逸,李晓军,姚俊萍,等.不平衡数据分类数据层面方法:现状及研究进展[J].计算机应用研究, 2023,40(1):11-19.
[10] GUO H X, LI Y J, SHANG J, et al. Learning from class-imbalanced data: Review of methods and applications[J]. Expert Systems with Applications, 2017,73:220-239.
[11] ESTABROOKS A, JO T, JAPKOWICZ N. A multiple resampling method for learning from imbalanced data sets[J]. Computational Intelligence, 2004,20(1):18-36.
[12] LAURIKKALA J. Improving identification of difficult small classes by balancing class distribution[C]// 8th Conference on Artificial Intelligence in Medicine in Europe, AIME 2001 Cascais. Springer, 2001:63-66.
[13] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16(1):321-357.
[14] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning[C]// International Conference on Intelligent Computing. Springer, 2005:878-887.
[15] BECKMANN M, EBECKEN N F F, PIRES DE LIMA B S L. A KNN undersampling approach for data balancing[J]. Journal of Intelligent Learning Systems and Applications, 2015,7(4): 104-116.
[16] HE H B, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]// 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, 2008:1322-1328.
[17] CHARLES R Q, SU H, MO K C, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:77-85.
[18] DOVRAT O, LANG I T, AVIDAN S. Learning to sample[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019:2755-2764.
[19] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016:770-778.
[20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017:6000-6010.
[21] WU C Z, ZHENG J W, PFROMMER J, et al. Attention-based point cloud edge sampling[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2023:5333-5343.
[22] HU R Z, SHA T K, KAICK O V, et al. Data sampling in multi-view and multi-class scatterplots via set cover optimization[J]. IEEE Transactions on Visualization and Computer Graphics, 2019,26(1):739-748.
[23] YE X C, XIAO K Q, CAO R X, et al. Microstructure evolution and microhardness of TiAl based alloy blade by vacuum suction casting[J]. Vacuum, 2019,163:186-193.
[24] ZHANG A M, YU H L, ZHOU S L, et al. Instance weighted SMOTE by indirectly exploring the data distribution[J]. Knowledge-Based Systems, 2022,249. DOI: 10.1016/j.knosys.2022.108919.
[25] SUN Z Z, HU H, CHEN X. Numerical optimization of gating system parameters for a magnesium alloy casting with multiple performance characteristics[J]. Journal of Materials Processing Technology, 2008,199(1-3):256-264.