Short Text Classification Combining Attention Mechanism and Mengzi Model
(1. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China; 2. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China)
CHEN Xuesong1, LI Heng1, WANG Haochang2. Short Text Classification Combining Attention Mechanism and Mengzi Model[J]. Computer and Modernization, 2024, 0(09): 101-106.
[1] 卢春华,胡晓楠,彭璐康,等. 融合网络和文本特征的智能课程推荐方法[J]. 计算机应用与软件, 2023,40(2):74-81.
[2] 张建,严珂,马祥. 基于神经网络的复杂垃圾信息过滤算法分析[J]. 计算机应用, 2022,42(3):770-777.
[3] WANKHADE M, RAO A C S, KULKARNI C. A survey on sentiment analysis methods, applications, and challenges[J]. Artificial Intelligence Review, 2022,55(7):5731-5780.
[4] 穆建媛,朱毅,周鑫柯,等. 基于提示学习的中文短文本分类方法[J]. 中文信息学报, 2023,37(7):82-90.
[5] 淦亚婷,安建业,徐雪. 基于深度学习的短文本分类方法研究综述[J]. 计算机工程与应用, 2023,59(4):43-53.
[6] LI C B, DUAN Q J, JI C H, et al. Method of short text classification based on CHI and TF-IWF feature selection[J]. Journal of Chongqing University of Technology (Natural Science), 2021,35(5):135-140.
[7] LI Q, PENG H, LI J X, et al. A survey on text classification: From traditional to deep learning[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2022,13(2). DOI: 10.1145/3495162.
[8] 桂韬,奚志恒,郑锐,等. 基于深度学习的自然语言处理鲁棒性研究综述[J/OL]. 计算机学报:1-26[2023-08-04]. https://kns.cnki.net/kcms/detail/11.1826.tp.20230727.
0855.002.html.
[9] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
[10] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arxiv:1810.04805, 2015.
[11] LIU Y, OTT M, GOYAL N, et al. RoBERTa: A robustly optimized BERT pretraining approach[EB/OL]. [2023-06-23]. https://www.aclweb.org/anthology/N19-1423.
[12] ZHANG Z S, ZHANG H Q, CHEN K M, et al. Mengzi: Towards lightweight yet ingenious pre-trained models for Chinese[J]. arXiv preprint arXiv:2110.06696, 2021.
[13] KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. ACL, 2014:1746-1751.
[14] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. ACL, 2017:562-570.
[15] LI Z J, GENG C Y, SONG P. Research on short text classification based on LSTM-TextCNN joint model[J]. Journal of Xi’an Technological University, 2020,40(3):299-304.
[16] 黄玉娇,詹李超,范兴刚,等. 基于知识蒸馏模型ELECTRA-base-BiLSTM的文本分类[J]. 计算机科学, 2022,49(增刊2):144-149.
[17] 杨振宇,张登辉. 一种结合BERT与双层LSTM的复杂长句意图分类方法[J]. 计算机应用与软件, 2021,38(12):207-212.
[18] 滕金保,孔韦韦,田乔鑫,等. 基于CNN和LSTM的多通道注意力机制文本分类模型[J]. 计算机工程与应用, 2021,57(23):154-162.
[19] 刘硕,王庚润,彭建华,等. 基于混合字词特征的中文短文本分类算法[J]. 计算机科学, 2022,49(4):282-287.
[20] 陈雪松,邹梦. 基于BERT-BiGRU-CNN模型的短文本分类研究[J/OL]. 吉林大学学报(信息科学版):1-6[2023-07-20]. https://doi.org/10.19292/j.cnki.jdxxp.2023
0707.003.
[21] 杨兴锐,赵寿为,张如学,等. 改进BERT词向量的BiLSTM-Attention文本分类模型[J]. 传感器与微系统, 2023,42(10):160-164.
[22] YOU Y, LI J, REDDI S, et al. Large batch optimization for deep learning: Training BERT in 76 minutes[J]. arXiv preprint arXiv:1904.00962, 2020.
[23] KOWSARI K, BROWN D E, HEIDARYSAFA M, et al. Hdltex: Hierarchical deep learning for text classification[C]// 2017 16th IEEE International Conference on Machine Learning and Applications(ICMLA). IEEE, 2017:364-371.
[24] YU Q, WANG Z Y, JIANG K W. Research on text classification based on BERT-BIGRU model[C]// Proceedings of the 2020 3rd International Conference on Modeling,Simulation and Optimization Technologies and Applications. IOP Publishing, 2021. DOI:10.1088/1742-6596/1746/1/012019.
[25] 程艳,孙欢,陈豪迈,等. 融合卷积神经网络与双向GRU的文本情感分析胶囊模型[J]. 中文信息学报, 2021,35(5):118-129.
[26] KUMAR A, NARAPAREDDY V T, SRIKANTH V A, et al. Sarcasm detection using multi-head attention based bidirectional LSTM[J]. IEEE Access, 2020,8(1): 6388-6397.
[27] 王金政,杨颖,余本功. 基于多头协同注意力机制的客户投诉文本分类模型[J]. 数据分析与知识发现, 2023,7(1):128-137.
[28] 翟一鸣,王斌君,周枝凝,等. 面向文本分类的多头注意力池化RCNN模型[J]. 计算机工程与应用, 2021,57(12):155-160.