Features Analysis of Suicide Ideation Causes Based on Machine Learning
(1. School of Information and Mechatronic Engineering, Jiangxi Science and Technology Normal University, Nanchang 330036, China; 2. School of Mathematics and Computer, Yuzhang Normal University, Nanchang 330103, China; 3. Jiangxi Province Science and Technology Infrastructure Center, Nanchang 330003, China)
FU Qi1, ZHANG Liyuan2, DAI Huan3. Features Analysis of Suicide Ideation Causes Based on Machine Learning[J]. Computer and Modernization, 2024, 0(04): 77-82.
[1] 国家卫生健康委员会. 中国卫生健康统计年鉴(2022)[M]. 北京:中国协和医科大学出版社, 2022:286.
[2] GUO M, ZHU T S. Research on social media user suicide influencing factors, active recognition and intervention[C]// Proceedings of the 2018 International Conference on Human Centered Computing. Springer, 2018:372-379.
[3] JUNG E J, KIM S. Suicide on YouTube: Factors engaging viewers to a selection of suicide-themed videos[J]. PLoS ONE, 2021,16(6). DOI: 10.1371/journal.pone.0252796.
[4] LI H, HAN Y J, XIAO Y Y, et al. Suicidal ideation risk and socio-cultural factors in China: A longitudinal study on social media from 2010 to 2018[J]. International Journal of Environmental Research and Public Health, 2021,18(3). DOI: 10.3390/ijerph18031098.
[5] HOLMAN M S, WILLIAMS M N. Suicide risk and protective factors: A network approach[J]. Archives of Suicide Research, 2022,26(1):137-154.
[6] UNRUH-DAWES E L, SMITH L M, KRUG MARKS C P, et al. Differing relationships between instagram and Twitter on suicidal thinking: The importance of interpersonal factors[J]. Social Media+Society, 2022,8(1). DOI: 10.1177/20563051221077027.
[7] RAKOFF J, CHAVARRIA J, HAMILTON H A, et al. Cross-sectional study of factors associated with suicide ideation in Ontario adolescents[J]. The Canadian Journal of Psychiatry, 2023,68(5):327-337.
[8] 李蕾,秦文哲,胡芳芳,等. 泰安市不同性别老年人自杀意念及其影响因素分析[J]. 中国卫生事业管理, 2023,40(11):876-880.
[9] 朱丹迪,潘伟刚,刘超猛,等. 住院老年抑郁症患者自杀行为影响因素分析[J]. 中国神经精神疾病杂志, 2023,49(6):357-361.
[10] MENON V, BAFNA A R, ROGERS M L, et al. Factor structure and validity of the Revised Suicide Crisis Inventory (SCI-2) among Indian adults[J]. Asian Journal of Psychiatry, 2022,73. DOI: 10.1016/j.ajp.2022.103119.
[11] BROWN R C, WITT A. Social factors associated with non-suicidal self-injury (NSSI)[J]. Child and Adolescent Psychiatry and Mental Health, 2019,13. DOI: 10.1186/s13034
-019-0284-1.
[12] DSOUZA D D, QUADROS S, HYDERABADWALA Z J, et al. Aggregated COVID-19 suicide incidences in India: Fear of COVID-19 infection is the prominent causative factor[J]. Psychiatry Research, 2020,290. DOI: 10.1016/j.psychres.2020.113145.
[13] 朱静. 山东省农村老年人自杀意念及其影响因素研究[D]. 济南:山东大学, 2019.
[14] ALMAGHREBI A H A. Risk factors for attempting suicide during the COVID-19 lockdown: Identification of the high-risk groups[J]. Journal of Taibah University Medical Sciences, 2021,16(4):605-611.
[15] 宋锦,王正君,张雨欣,等. 中国精神分裂症患者自杀风险影响因素的Meta分析[J]. 现代预防医学, 2023,50(11):2042-2050.
[16] 李硕,杨先梅,王丹,等. 基于队列数据探索精神分裂症患者自杀死亡的影响因素:一项来自中国西部170006例样本的实证研究[J]. 四川大学学报(医学版), 2023,54(1):142-147.
[17] CHANCELLOR S, SUMNER S A, DAVID-FERDON C, et al. Suicide risk and protective factors in online support forum posts: Annotation scheme development and validation study[J]. JMIR Mental Health, 2021,8(11). DOI: 10.2196/24471.
[18] SARMIENTO I, KGAKOLE L, MOLATLHWA P, et al. Community perceptions about causes of suicide among young men in Botswana: An analysis based on fuzzy cognitive maps[J]. Vulnerable Children and Youth Studies, 2023. DOI: 10.1080/17450128.2023.2262941.
[19] 杨芳,李欣怡,何田玉,等. 微博高自杀风险用户的自杀方式意向及自杀意念原因[J]. 中国心理卫生杂志, 2022,36(10):851-855.
[20] JASHINSKY J, BURTON S H, HANSON C L, et al. Tracking suicide risk factors through Twitter in the US[J]. Crisis: The Journal of Crisis Intervention and Suicide Prevention, 2014,35(1):51-59.
[21] BERRY N, LOBBAN F, BELOUSOV M, et al. #WhyWeT-
weetMH: Understanding why people use Twitter to discuss mental health problems[J]. Journal of Medical Internet Research, 2017,19(4). DOI: 10.2196/jmir.6173.
[22] WALSH C G, RIBEIRO J D, FRANKLIN J C. Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning[J]. The Journal of Child Psychology and Psychiatry, 2018,59(12):1261-1270.
[23] 况利,徐小明,曾琪. 机器学习用于自杀研究的综述[J]. 山东大学学报(医学版), 2022,60(4):10-16.
[24] 张立颖,王文超,伍新春,等. 自杀风险的前因探索与识别预测——机器学习的应用[J/OL]. 应用心理学:1-17(2023-11-14)[2023-12-10]. https://link.cnki.net/urlid/33.1012.B.20231114.1549.008.
[25] 张艺琳,王超,李梦蝶,等. 医学生自杀意念影响因素及机器学习预测模型构建[J]. 中华疾病控制杂志, 2023,27(11):1320-1328.
[26] 薛朝霞,张钰颖,邢清丽,等. 自杀意念向自杀未遂转变的近端和远端影响因素[J]. 中国临床心理学杂志, 2023,31(3):542-548.
[27] 薛朝霞,任子媛,荆雷,等. 大学生自杀行为影响因素的分类决策树分析[J/OL]. 心理发展与教育:1-10(2023-09-12)[2023-12-10]. https://kns.cnki.net/kcms2/article/abstract?v=Fhes7GDiHN32Mu4k3u8xmr13kfdAVXZgsX4WEXbgt7td0xsQgyEHtMx1kqh7N4Btvxa2eEZTThvODCMd
-lxrjfH3pJqQNlyjzj353rVfY0y1vRyZccZCiHfUkPTs ZuPHc
89ARl1DT1Y=&uniplatform=NZKPT&language=CHS.
[28] 魏艳欣. 自杀未遂及其重复自杀行为的影响因素与预测模型研究[D]. 济南:山东大学, 2022.
[29] FODEH S, LI T H, MENCZYNSKI K, et al. Using machine learning algorithms to detect suicide risk factors on Twitter[C]// Proceedings of the 2019 International Conference on Data Mining Workshops (ICDMW). IEEE, 2019:941-948.
[30] SIERRA G, ANDRADE-PALOS P, BEL-ENGUIX G, et al. Suicide risk factors: A language analysis approach in social media[J]. Journal of Language and Social Psychology, 2022,41(3):312-330.
[31] KIM D, QUAN L H, SEO M, et al. Interpretable machine learning-based approaches for understanding suicide risk and protective factors among South Korean females using survey and social media data[J]. Suicide and Life: Threatening Behavior, 2023,53(3):484-498.
[32] 黄昌宁,赵海. 中文分词十年回顾[J]. 中文信息学报, 2007,21(3):8-19.
[33] LV M Z, LI A, LIU T L, et al. Creating a Chinese suicide dictionary for identifying suicide risk on social media[J]. PeerJ, 2015,3. DOI: 10.7717/peerj.1455.
[34] TAN Z Y, LIU X Y, LIU X Q, et al. Designing microblog direct messages to engage social media users with suicide ideation: Interview and survey study on Weibo[J]. Journal of Medical Internet Research, 2017,19(12). DOI: 10.2196
/jmir.8729.
[35] 付淇,刘德喜,邱祥庆,等. 自杀意念原因抽取中的标签增强方法[J]. 小型微型计算机系统, 2022,43(6):1254-1264.