[1] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016.
[2] MATER A C, COOTE M L. Deep learning in chemistry[J]. Journal of Chemical Information and Modeling, 2019,59(6):2545-2559.
[3] 刘铁岩,陈薇,王太峰,等. 分布式机器学习算法、理论与实践[M]. 北京:机械工业出版社, 2018.
[4] SO J, GULER B, AVESTIMEHR A S. CodedPrivateML: A fast and privacy-preserving framework for distributed machine learning[J]. IEEE Journal on Selected Areas in Information Theory, 2021,2(1):441-451.
[5] SHOKRI R, SHMATIKOV V. Privacy-preserving deep learning[C]// Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, 2015:1310-1321.
[6] YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019,10(2). DOI: 10.1145/3298981.
[7] HSIEH K, PHANISHAYEE A, MUTLU O, et al. The non-IID data quagmire of decentralized machine learning[C]// Proceedings of the 37th International Conference on Machine Learning. ACM, 2020:4387-4398.
[8] ZHENG S X, MENG Q, WANG T F, et al. Asynchronous stochastic gradient descent with delay compensation[C]// Proceedings of the 34th International Conference on Machine Learning. ACM, 2017:4120-4129.
[9] WANG S Q, TUOR T, SALONIDIS T, et al. Adaptive federated learning in resource constrained edge computing systems[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6):1205-1221.
[10] 郭桂娟,田晖,皮慧娟,等. 面向非独立同分布数据的联邦学习研究进展[J]. 小型微型计算机系统, 2023,44(11):2442-2449.
[11] NGUYEN H T, SEHWAG V, HOSSEINALIPOUR S, et al. Fast-convergent federated learning[J]. IEEE Journal on Selected Areas in Communications, 2021,39(1):201-218.
[12] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. JMLR, 2017:1273-1282.
[13] ZHAO Y, LI M, LAI L Z, et al. Federated learning with non-IID data[J]. arXiv preprint arXiv:1806.00582, 2018.
[14] LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[J]. arXiv preprint arXiv:1812.06127, 2018.
[15] KARIMIREDDY S P, KALE S, MOHRI M, et al. Scaffold: Stochastic controlled averaging for federated learning[C]// Proceedings of the 37th International Conference on Machine Learning. JMLR, 2020:5132-5143.
[16] WANG J Y, LIU Q H, LIANG H, et al. Tackling the objective inconsistency problem in heterogeneous federated optimization[J]. arXiv preprint arXiv:2007.07481, 2020.
[17] LIN T, KONG L J, STICH S U, et al. Ensemble distillation for robust model fusion in federated learning[J]. arXiv preprint arXiv:2006.07242, 2020.
[18] MANSOUR Y, MOHRI M, RO J, et al. Three approaches for personalization with applications to federated learning[J]. arXiv preprint arXiv:2002.10619, 2020.
[19] KOPPARAPU K, LIN E. FedFMC: Sequential efficient federated learning on non-IID data[J]. arXiv preprint arXiv:2006.10937, 2020.
[20] GHOSH A, HONG J, YIN D, et al. Robust federated learning in a heterogeneous environment[J]. arXiv preprint arXiv:1906.06629, 2019.
[21] GHOSH A, CHUNG J, YIN D, et al. An efficient framework for clustered federated learning[J]. arXiv preprint arXiv:2006.04088, 2020.
[22] BRIGGS C, FAN Z, ANDRAS P. Federated learning with hierarchical clustering of local updates to improve training on non-IID data[C]// Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. DOI: 10.1109/IJCNN48605.2020.9207469.
[23] SATTLER F, MULLER K R, SAMEK W. Clustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,32(8):3710-3722.
[24] LONG G D, XIE M, SHEN T, et al. Multi-center federated learning: Clients clustering for better personalization[J]. arXiv preprint arXiv:2108.08647, 2021.
[25] 常黎明,刘颜红,徐恕贞. 基于数据分布的聚类联邦学习[J]. 计算机应用研究, 2023,40(6):1697-1701.
[26] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007,315(5814):972-976.
[27] ALAMI N, MEKNASSI M, EN-NAHNAHI N, et al. Unsupervised neural networks for automatic Arabic text summarization using document clustering and topic modeling[J]. Expert Systems with Applications, 2021,172. DOI: 10.1016/j.eswa.2021.114652.