Base Station Location Mechanism of Power Wireless Private Network Based on MVO Algorithm
(1. College of Electronic and Optical Engineering & Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2. State Key Laboratory of Millimeter Waves,Southeast University,Nanjing 210096, China)
XU Yu-jia1, ZHANG Hua-mei1, 2. Base Station Location Mechanism of Power Wireless Private Network Based on MVO Algorithm[J]. Computer and Modernization, 2024, 0(03): 105-109.
[1] PEREIRA M B, CAVALCANTI F R P, MACIEL T F. Particle swarm optimization for base station placement[C]// 2014 International Telecommunications Symposium (ITS). IEEE, 2014. DOI:10.1109/ITS.2014.6948033.
[2] WANG Y H, XIANG L S, LIU X Y. Base station location optimization based on genetic algorithm in CAD system[C]// 3rd International Conference on Human Centered Computing (HCC). Springer, 2017:208-214.
[3] 朱思峰,刘芳,柴争义. 基于免疫计算的WCDMA网络基站选址优化[J]. 电子与信息学报, 2011,33(6):1492-1495.
[4] 张英杰,毛赐平,俎云霄,等. 基于免疫算法的TD-SCDMA网络基站选址优化[J]. 通信学报, 2014,35(5):44-48.
[5] LI L L, MA B L, JIA Z H, et al. Base station locations optimization in LTE using artificial immune algorithm[C]// 2017 10th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2017:165-168
[6] 宋黎. 基于遗传算法的通信基站规划方法研究[D]. 大连:大连理工大学, 2019.
[7] WANG Z C. Improved particle swarm communication algorithm for wireless communication network base station optimization application[C]// 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC). IEEE, 2022:1-5.
[8] 唐丽晴,应忠于,罗云. 基于鲸鱼优化改进算法的基站选址[J]. 计算机与现代化, 2020(9):100-105.
[9] 刘娟,杨春花. 粒子群果蝇混合改进算法在基站选址优化问题中的应用[J]. 计算机与数字工程, 2021,49(7):1341-1345.
[10] ZHOU C L, CHEN Z J. A practical base station location optimization based on four networks integration[C]// 2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI). IEEE, 2021:470-475
[11] 冯佳勇. 基于模拟退火—遗传混合算法的电力无线专网基站选址机制[D]. 北京:北京邮电大学, 2018.
[12] 谢宏福.泛在电力物联网环境下电力无线专网优化与安全控制研究[D]. 南京:南京邮电大学, 2021.
[13] 徐炜. 基于混合免疫算法的LTE基站选址优化研究[D]. 重庆:重庆邮电大学, 2018.
[14] VATSH I, GUPTA V, BHATTACHARYYA B. Optimizing base station deployment for LTE using metaheuristic algorithms[C]// 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). IEEE, 2019. DOI: 10.1109/VITEGoN. 2019.
8899758.
[15] 马一丁,张多纳,焦展宇,等. 基于遗传算法的基站选址技术研究[J]. 电子技术与软件工程, 2022,241(23):25-30.
[16] 潘翀,刘鑫. 基于改进NSGA-2 算法的电力无线专网基站选址研究[J]. 电力信息与通信技术, 2020,18(3):34-39.
[17] 邢宁哲,李信,常海娇,等. 基于改进人工鱼群算法的电力无线专网基站规划[C]// 中国电力科学研究院.2016智能电网发展研讨会论文集. IEEE, 2016:415-420.
[18] 张吉,赵夙,朱晓荣. 基于大数据挖掘的LTE网络重叠覆盖优化方法[J]. 南京邮电大学学报(自然科学版), 2020,40(6):92-99.
[19] MIRJALILI S, MIRJALILI S M, HATAMLOU A. Multi-verse optimizer: A nature-inspired algorithm for global optimization[J]. Neural Computing & Applications, 2016,27(2):495-513.
[20] JUI J J, AHMAD M A, RASHID M I M. Modified multi-verse optimizer for solving numerical optimization problems[C]// 2020 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS). IEEE, 2020:81-86.
[21] 郑聪,周海峰,郑东强,等. 基于改进多元宇宙算法的主动配电网故障定位方法研究[J]. 电力系统保护与控制, 2023,51(2):169-179.
[22] 龙干,黄媚,方力谦,等. 基于改进多元宇宙算法优化ELM的短期电力负荷预测[J]. 电力系统保护与控制, 2022,50(19):99-106.
[23] JAENGCHUEA S, LOHPETCH D. A hybrid genetic algorithm with local search and tabu search approaches for solving the post enrolment based course timetabling problem: Outperforming guided search genetic algorithm[C]// 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE). IEEE, 2015:29-34
[24] 何铸宁. 无线专网网络规划与性能分析[D]. 北京:北京邮电大学, 2016.