[1] SAXENA A, CHAKRABARTI S, TALUKDAR P. Question answering over temporal knowledge graphs[J]. arXiv preprint arXiv:2106.01515, 2021.
[2] CHEN Z Y, LIAO J, ZHAO X. Multi-granularity temporal question answering over knowledge graphs[C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. 2023:11378-11392.
[3] SONG X T, BAI L Y, LIU R K, et al. Temporal knowledge graph entity alignment via representation learning[C]// The 27th International Conference on Database Systems for Advanced Applications. 2022:11-14.
[4] RADSTOK W, CHEKOL M, VELEGRAKIS Y. Leveraging static models for link prediction in temporal knowledge graphs[C]// 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). 2021:1034-1041.
[5] LIAO S Y, LIANG S S, MENG Z Q, et al. Learning dynamic embeddings for temporal knowledge graphs[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 2021:535-543.
[6] LIU K Z, ZHANG Y H. A temporal knowledge graph completion method based on balanced timestamp distribution[J]. arXiv preprint arXiv:2108.13024, 2021.
[7] WU J P, XU Y S, ZHANG Y X, et al. Tie: A framework for embedding-based incremental temporal knowledge graph completion[C]// Proceedings of the 44th international ACM SIGIR Conference on Research and Development in Information Retrieval. 2021:428-437.
[8] CHEN K, LI C C, LI A P, et al. Focus on inherent attributes for temporal knowledge graph completion[C]// 2021 International Joint Conference on Neural Networks (IJCNN).
2021:1-8.
[9] WANG Y L, XU X Y. ERGCN: Enhanced relational graph convolution network, an optimization for entity prediction tasks on temporal knowledge graphs[J]. Future Internet, 2022,14(12):376.
[10] BAI L Y, MA X N, ZHANG M C, et al. TPmod: A tendency-guided prediction model for temporal knowledge graph completion[J]. ACM Transactions on Knowledge Discovery from Data, 2021,15(3):1-17.
[11] MA S X, LI A P, ZHAO X J, et al. Learning BiLSTM-based embeddings for relation prediction in temporal knowledge graph[J]. Journal of Physics: Conference Series, 2021,1871(1):012050.
[12] LIU Y, HUA W, XIN K X, et al. Context-aware temporal knowledge graph embedding[C]// Web Information Systems Engineering–WISE 2019. 2019:583-598.
[13] QIAO Y W, SUN L L, XIAO C J. High order semantic relations-based temporal recommendation model by collaborative knowledge graph learning[C]// Asia-Pacific Web (APWeb) and Web-age Information Management (WAIM) Joint International Conference on Web and Big Data. 2020:337-351.
[14] XU C, CHEN Y Y, NAYYERI M, et al. Temporal knowledge graph completion using a linear temporal regularizer and multivector embeddings[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021:2569-2578.
[15] YU M, GUO J J, YU J, et al. TBDRI: Block decomposition based on relational interaction for temporal knowledge graph completion[J]. Applied Intelligence, 2022,53(5):5072-5084.
[16] JIANG T S, LIU T Y, GE T. Towards time-aware knowledge graph completion[C]// COLING 2016, the 26th International Conference on Computational Linguistics. 2016:1715-1724.
[17] XU C J, NAYYERI M, ALKHOURY F, et al. Temporal knowledge graph completion based on time series gaussian embedding[J]. arXiv preprint arXiv:1911.07893, 2020.
[18] HU S M, WANG B Y, WANG J P, et al. Transformer-based temporal knowledge graph completion[C]// 2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI). 2023.
[19] CHEN X J, JIA S B, DING L, et al. Reasoning over temporal knowledge graph with temporal consistency constraints[J]. Journal of Intelligent & Fuzzy Systems, 2021,40(6):11941-11950.
[20] 李凤英,范伟豪. 基于时序感知的动态知识图谱补全方法[J]. 计算机工程与应用, 2022,58(15):202-209.
[21] MAVROMATIS C, SUBRAMANYAM P L, IOANNIDIS V N, et al. TempoQR: Temporal question reasoning over knowledge graphs[J]. arXiv preprint arXiv:2112.05785, 2021.
[22] OTTE K, VESTERMARK K S, LI H, et al. Towards a question answering system over temporal knowledge graph embeddings[M]// Deep Learning for Knowledge Graphs 2022. 2022:1-10.
[23] LACROIX T, OBOZINSKI G, USUNIER N. Tensor decompositions for temporal knowledge base completion[J]. arXiv preprint arXiv:2004.04926, 2020.
[24] FÉVRY T, SOARES L B, FITZGERALD N, et al. Entities as experts: Sparse memory access with entity supervision[J]. arXiv preprint arXiv:2004.07202, 2020.
[25] TITOV I, WELLING M, SCHLICHTKRULL M, et al. Modeling relational data with graph convolutional networks[J]. arXiv preprint arXiv:1703.06103, 2017.
[26] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[27] LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: A lite BERT for self-supervised learning of language representations[C]// International Conference on Learning Representations. arXiv preprint arXiv:1909.11942, 2019.
[28] SANH V, DEBUT L, CHAUMOND J, et al. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter[J]. arXiv preprint arXiv:1910.01108, 2019.
[29] SAXENA A, TRIPATHI A, TALUKDAR P. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[J]. 2020. DOI: 10.18653/v1/2020.acl-main.412.