[1] 廖成菊,冯正直. 抑郁症情绪加工与认知控制的脑机制[J]. 心理科学进展, 2010,18(2):282-287.
[2] 祁荣,陈军,余邵民. 关于抑郁症的研究综述[J]. 心理月刊, 2020,15(17):238-240.
[3] CASSANO P, FAVA M. Depression and public health: An overview[J]. Journal of Psychosomatic Research, 2002,53(4):849-857.
[4] 祁娜,冯媛,王刚. 抑郁症客观评估方法的研究进展[J]. 神经疾病与精神卫生, 2020,20(5):341-346.
[5] 汪作为,彭代辉,刘晓华,等. 忧郁/快感缺失型抑郁症临床评估与诊治指导建议[J]. 临床精神医学杂志, 2021,31(1):1-5.
[6] KROENKE K, SPITZER R L, WILLIAMS J B W. The PHQ-9: Validity of a brief depression severity measure[J]. Journal of General Internal Medicine, 2001,16(9):606-613.
[7] VALSTAR M, GRATCH J, SCHULLER B, et al. AVEC 2016: Depression, mood, and emotion recognition workshop and challenge[C]// Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge. 2016:3-10.
[8] OLBRICH S, ARNS M. EEG biomarkers in major depressive disorder: Discriminative power and prediction of treatment response[J]. International Review of Psychiatry, 2013,25(5):604-618.
[9] ZHOU Z H, FENG J. Deep forest: Towards an alternative to deep neural networks[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017:3553-3559.
[10] ISLAM M R, KABIR M A, AHMED A, et al. Depression detection from social network data using machine learning techniques[J]. Health Information Science and Systems, 2018,6(1). DOI: 10.1007/s13755-018-0046-0.
[11] FINGELKURTS A A, FINGELKURTS A A, BAGNATO S, et al. EEG oscillatory states as neuro-phenomenology of consciousness as revealed from patients in vegetative and minimally conscious states[J]. Consciousness and Cognition, 2012,21(1):149-169.
[12] 蒲涛,许莉,蒲涛青,等. 不同严重程度抑郁症患者SPECT/CT脑血流灌注显像特点分析[J]. 中国CT和MRI杂志, 2022,20(8):24-27.
[13] LAVE J R, FRANK R G, SCHULBERG H C, et al. Cost-effectiveness of treatments for major depression in primary care practice[J]. Archives of General Psychiatry, 1998,55(7):645-651.
[14] ERGUZEL T T, OZEKES S, TAN O, et al. Feature selection and classification of electroencephalographic signals: An artificial neural network and genetic algorithm based approach[J]. Clinical EEG and Neuroscience, 2015,46(4):321-326.
[15] HOSSEINIFARD B, MORADI M H, ROSTAMI R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal[J]. Computer Methods and Programs in Biomedicine, 2013,109(3):339-345.
[16] ORGO L, BACHMANN M, KALEV K, et al. Resting EEG functional connectivity and graph theoretical measures for discrimination of depression[C]// Proceedings of the 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). 2017:389-392.
[17] PENG H, XIA C, WANG Z H, et al. Multivariate pattern analysis of EEG-based functional connectivity: A study on the identification of depression[J]. IEEE Access, 2019,7:92630-92641.
[18] BALANO J B, HUERTO V L, SANCHEZ S, et al. Determining the level of depression using BDI-II through voice recognition[C]// Proceedings of the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA). 2019:387-391.
[19] FLINT A J, BLACK S E, CAMPBELL-TAYLOR I, et al. Abnormal speech articulation, psychomotor retardation, and subcortical dysfunction in major depression[J]. Journal of Psychiatric Research, 1993,27(3):309-319.
[20] 任泽裕,王振超,柯尊旺,等. 多模态数据融合综述[J]. 计算机工程与应用, 2021,57(18):49-64.
[21] CAI H S, QU Z D, LI Z, et al. Feature-level fusion approaches based on multimodal EEG data for depression recognition[J]. Information Fusion, 2020,59:127-138.
[22] 何俊,张彩庆,李小珍,等. 面向深度学习的多模态融合技术研究综述[J]. 计算机工程, 2020,46(5):1-11.
[23] KAHOU S E, PAL C, BOUTHILLIER X, et al. Combining modality specific deep neural networks for emotion recognition in video[C]// Proceedings of the 15th ACM on International Conference on Multimodal Interaction. 2013:543-550.
[24] YANG L, JIANG D M, XIA X H, et al. Multimodal measurement of depression using deep learning models[C]// Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge. 2017:53-59.
[25] 张迎辉,聂燕敏,孙波,等. 基于深度森林多模态数据决策级融合抑郁症评价方法[J]. 北京师范大学学报(自然科学版), 2018,54(5):606-611.
[26] WU D, PIGOU L, KINDERMANS P J, et al. Deep dynamic neural networks for multimodal gesture segmentation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(8):1583-1597.
[27] LAN Z Z, BAO L, YU S I, et al. Multimedia classification and event detection using double fusion[J]. Multimedia Tools and Applications, 2014,71(1):333-347.
[28] CAI H S, YUAN Z Q, GAO Y W, et al. A multi-modal open dataset for mental-disorder analysis[J]. Scientific Data, 2022,9(1). DOI: 10.1038/s41597-022-01211-x.
[29] DELORME A, MAKEIG S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis[J]. Journal of Neuroscience Methods, 2004,134(1):9-21.
[30] WIDMANN A, SCHROGER E, MAESS B. Digital filter design for electrophysiological data: A practical approach[J]. Journal of Neuroscience Methods, 2015,250:34-46.
[31] STAM C J, NOLTE G, DAFFERTSHOFER A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources[J]. Human Brain Mapping, 2007,28(11):1178-1193.
[32] ZENG L L, SHEN H, LIU L, et al. Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis[J]. Brain, 2012,135(5):1498-1507.
[33] VERGIN R, O'SHAUGHNESSY D. Pre-emphasis and speech recognition[C]// Proceedings of the 1995 Canadian Conference on Electrical and Computer Engineering. 1995,2:1062-1065.
[34] SOHN J, KIM N S, SUNG W. A statistical model-based voice activity detection[J]. IEEE Signal Processing Letters, 1999,6(1):1-3.
[35] EYBEN F, WOLLMER M, SCHULLER B. OpenSMILE: The Munich versatile and fast open-source audio feature extractor[C]// Proceedings of the 18th ACM International Conference on Multimedia. 2010:1459-1462.
[36] 罗涛,李剑峰,韩家辉,等. 一种基于多模态特征融合的骨质疏松评估方法[J]. 北京邮电大学学报, 2019,42(6):84-90.
[37] XU L, FU H Y, GOODARZI M, et al. Stochastic cross validation[J]. Chemometrics and Intelligent Laboratory Systems, 2018,175:74-81.