[1] EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]// NIPS’14: Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014:2366-2374.
[2] HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision[M]. Cambridge: Cambridge University Press, 2004.
[3] MAYER N, ILG E, FISCHER P, et al. What makes good synthetic training data for learning disparity and optical flow estimation[J]. International Journal of Computer Vision, 2018,126(9):942-960.
[4] ZHOU T H, BROWN M, SNAVELY N, et al. Unsupervised learning of depth and ego-motion from video[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:6612-6619.
[5] GARG R, B G V K, CARNEIRO G, et al. Unsupervised CNN for single view depth estimation: geometry to the rescue[C]// Computer Vision – ECCV 2016. 2016:740-756.
[6] 陈莹,王一良. 基于密集特征融合的无监督单目深度估计[J]. 电子与信息学报, 2021,43(10):2976-2984.
[7] 詹雁,张娟,金昌基. 联合语义感知与域适应方法的单目深度估计[J]. 传感器与微系统, 2021,40(5):60-63.
[8] 叶星余,何元烈,汝少楠. 基于生成式对抗网络及自注意力机制的无监督单目深度估计和视觉里程计[J]. 机器人, 2021,43(2):203-213
[9] BIAN J W, LI Z C, WANG N Y, et al. Unsupervised scale-consistent depth and ego-motion learning from monocular Video[J]. arXiv preprint arXiv:1908.10553, 2019.
[10] YANG B, BENDER G, LE Q V, et al. CondConv: Conditionally parameterized convolutions for efficient inference[C]// NIPS’19: Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019:1307-1318.
[11] CHEN Y P, DAI X Y, LIU M C, et al. Dynamic convolution: attention over convolution kernels[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:11027-11036.
[12] ZHANG Y K, ZHANG J, WANG Q, et al. DyNet: Dynamic convolution for accelerating convolutional neural networks[J]. arXiv preprint arXiv:2004.10694, 2020.
[13] LIU H J, LIU F Q, FAN X Y, et al. Polarized self-attention: Towards high-quality pixel-wise regression[J]. arXiv preprint arXiv:2107.00782, 2021.
[14] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4):600-612.
[15] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: The KITTI dataset[J]. International Journal of Robotics Research, 2013,32(11):1231-1237.
[16] MAHJOURIAN R, WICKE M, ANGELOVA A. Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:5667-5675.
[17] YIN Z C, SHI J P. GeoNet: Unsupervised learning of dense depth, optical flow and camera pose[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:1983-1992.
[18] ZOU Y L, LUO Z L, HUANG J B. DF-Net: Unsupervised joint learning of depth and flow using cross-task consistency[C]// Computer Vision - ECCV 2018. 2018:38-55.
[19] WANG C Y, BUENAPOSADA J M, ZHU R, et al. Learning depth from monocular videos using direct methods[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:2022-2030.
[20] RANJAN A, JAMPANI V, BALLES L, et al. Competitive collaboration: Joint unsupervised learning of depth, camera motion, optical flow and motion segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:12232-12241.
[21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[22] SPENCER J, BOWDEN R, HADFIELD S. DeFeat-Net: General monocular depth via simultaneous unsupervised representation learning[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:14390-14401.
[23] LI H H, GORDON A, ZHAO H, et al. Unsupervised monocular depth learning in dynamic scenes[J]. arXiv preprint arXiv:2010.16404, 2020.
[24] ZHAN H Y, GARG R, WEERASEKERA C S, et al. Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:340-349.
[25] SHEN T W, LUO Z X, ZHOU L, et al. Beyond photometric loss for self-supervised ego-motion estimation[C]// 2019 International Conference on Robotics and Automation (ICRA). 2019:6359-6365.
[26] GODARD C, AODHA O M, FIRMAN M, et al. Digging into self-supervised monocular depth estimation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019:3827-3837.
[27] BIAN J W, LI Z C, WANG N Y, et al. Unsupervised scale-consistent depth and ego-motion learning from monocular video[C]// NIPS’19: Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019:35-45.