[1] 徐冰冰,岑科延,黄俊杰,等. 图卷积神经网络综述[J]. 计算机学报, 2020,43(5):755-780.
[2] JIANG Z R, GAO Z, DUAN Y, et al. Camouflaged Chinese spam content detection with semi-supervised generative active learning[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020:3080-3085.
[3] DHAWAN S, GANGIREDDY S C R, KUMAR S, et al. Spotting collective behaviour of online frauds in customer reviews[J]. arXiv preprint arXiv:1905.13649, 2019.
[4] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]// Proceedings of the 5th International Conference on Learning Representations. 2017.
[5] ZUGNER D, AKBARNEJAD A, GUNNEMANN S. Adversarial attacks on neural networks for graph data[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018:2847-2856.
[6] DAI H J, LI H, TIAN T, et al. Adversarial attack on graph structured data[C]// Proceedings of the 35th International Conference on Machine Learning. 2018:1115-1124.
[7] WANG X Y, EATON J, HSIEH C J, et al. Attack graph convolutional networks by adding fake nodes[J]. arXiv preprint arXiv:1810.10751, 2018.
[8] ZHOU K, MICHALAK T P, WANIEK M, et al. Attacking similarity-based link prediction in social networks[C]// Proceedings of the 18th International Conference on Autonomous Agents and Multi Agent Systems. 2019:305-313.
[9] SUN Y W, WANG S H, TANG X F, et al. Node injection attacks on graphs via reinforcement learning[J]. arXiv preprint arXiv:1909.06543, 2019.
[10] GUNNEMANN S. Graph neural networks: Adversarial robustness[M]// Graph Neural Networks: Foundations, Frontiers, and Applications. Springer, Singapore, 2022:149-176.
[11] ENTEZARI N, AL-SAYOURI S A, DARVISHZADEH A, et al. All you need is low (rank) defending against adversarial attacks on graphs[C]// Proceedings of the 13th International Conference on Web Search and Data Mining. 2020:169-177.
[12] JIN M, CHANG H, ZHU W W, et al. Power up! Robust graph convolutional network via graph powering[C]// 35th AAAI Conference on Artificial Intelligence. 2021:8004-8012.
[13] CHEN J Y, LIN X, XIONG H, et al. Smoothing adversarial training for GNN[J]. IEEE Transactions on Computational Social Systems, 2020,8(3):618-629.
[14] XU K D, CHEN H G, LIU S J, et al. Topology attack and defense for graph neural networks: An optimization perspective[J]. arXiv preprint arXiv:1906.04214, 2019.
[15] ZUGNER D, GUNNEMANN S. Adversarial attacks on graph neural networks via meta learning[J]. arXiv preprint arXiv:1902.08412, 2019.
[16] GEISLER S, ZUGNER D, GUNNEMANN S. Reliable graph neural networks via robust aggregation[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020:13272-13284.
[17] CHEN L, LI J T, PENG Q B, et al. Understanding structural vulnerability in graph convolutional networks[J]. arXiv preprint arXiv:2108.06280, 2021.
[18] GEISLER S, SCHMIDT T, SIRIN H, et al. Robustness of graph neural networks at scale[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. 2021:7637-7649.
[19] 周世健. 截尾均值与平尾均值[J]. 西安地质学院学报, 1996,18(4):84-90.
[20] 周江文. 经典误差理论与抗差估计[J]. 测绘学报, 1989,18(2):115-120.
[21] HAMPEL F R, RONCHETTI E M, ROUSSEEUW P J, et al. Robust Statistics: The Approach Based on influence Functions[M]. John Wiley & Sons, 2011.
[22] ZHU D Y, ZHANG Z W, PENG CUI, et al. Robust graph convolutional networks against adversarial attacks[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019:1399-1407.
[23] MCCALLUM A K, NIGAM K, RENNIE J, et al. Automating the construction of internet portals with machine learning[J]. Information Retrieval, 2000,3(2):127-163.
[24] XU B B, SHEN H W, CAO Q, et al. Graph wavelet neural network[J]. arXiv preprint arXiv:1904.07785, 2019.
[25] THEKUMPARAMPIL K K, WANG C, OH S, et al. Attention-based graph neural network for semi-supervised learning[J]. arXiv preprint arXiv:1803.03735, 2018.
[26] HU W B, CHEN C, CHANG Y M, et al. Robust graph convolutional networks with directional graph adversarial training[J]. Applied Intelligence, 2021,51(11):7812-7826.
[27] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv preprint arXiv: 1710.10903, 2018.
[28] KINGMA D P, BA J. Adam: A method for stochastic optimization[C]// 2015 International Conference on Learning Representations (ICLR). 2015.
[29] 陈晋音.张敦杰.黄国瀚.等. 面向图神经网络的对抗攻击与防御综述[J]. 网络与信息安全学报, 2021,7(3): 1-28.