[1] ZHANG X. Deep learning-based multi-focus image fusion: A survey and a comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021:1.
[2] LIU W, ZHENG Z, WANG Z. Robust multi-focus image fusion using lazy random walks with multiscale focus measures[J]. Signal Processing, 2021,179(6):107850.
[3] BANHARNSAKUN A. Multi-focus image fusion using best-so-far ABC strategies[J]. Neural Computing and Applications, 2019,31(7):2025-2040.
[4] ZHANG Y, BAI X X, WANG T. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure[J]. Information Fusion, 2017,35:81-101.
[5] LIU Y, WANG Z F. Simultaneous image fusion and denoising with adaptive sparse representation[J]. Image Processing IET, 2015,9(5):347-357.
[6] LIU Y, CHEN X, RABAB K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016,23(12):1882-1886.
[7] MA X, HU S, LIU S, et al. Multi-focus image fusion based on joint sparse representation and optimum theory[J]. Signal Processing: Image Communication, 2019,78:125-134.
[8] HILL P, CANAGARAJAH C, BULL D. Image fusion using complex wavelets[C]// Proceedings of British Machine Vision Conference(BMVC). 2002:487-496.
[9] YANG B, LI S, SUN F. Image fusion using nonsubsampled contourlet transform[C]// Proceedings of International Conference on Image and Graphics (ICIG).2007:719-724. 〖HJ0.95mm〗
[10]LI S, KANG X, HU J. Image fusion with guided filtering[J]. IEEE Transaction. Image Process. 2013,22(7):2864-2875.
[11]ZHOU Z, LI S, WANG B. Multi-scale weighted gradient-based fusion for multi-focus images[J]. Information Fusion, 2014,20:60-72.
[12]LIU Y, LIU S, WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015,24 (1):147-164.
[13]LIU Y, CHEN X, PENG H, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017,36:191-207.
[14]LAI R, LI Y, GUAN J, et al. Multi-scale visual attention deep convolutional neural network for multi-focus image fusion[J]. IEEE Access, 2019,7:114385-114399.
[15]LI J, GUO X, LU G, et al. DRPL: Deep regression pair learning for multi-focus image fusion[J]. IEEE Transactions Image Process. 2020,29:4816-4831.
[16]XU H, MA J, JIANG J, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,44(1):502-518.
[17]ZHANG H, LE Z L, SHAO Z F, et al. MFF-GAN: An unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion[J]. Information Fusion, 2021,66:40-53.
[18]MA B, ZHU Y, YIN X, et al. SESF-Fuse: An unsupervised deep model for multi-focus image fusion[J]. Neural Computing and Applications, 2021,33(12):5793-5804.
[19]HE K M,SUN J, TANG X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(6):1397-1409.
[20]HUANG W, JING Z L. Evaluation of focus measures in multi-focus image fusion[J]. Pattern Recognition Letters, 2007,28(4):493-500.
[21]NAYAR S, NAKAGAWA Y. Shape from focus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16 (8):824-831.
[22]MITIANOUDIS N, STATHAKI T. Pixel-based and region-based image fusion schemes using ica bases[J]. Information Fusion, 2007,8(2):131-142.
[23]NEJATI M, SAMAVI S, SHIRANI S. Multi-focus image fusion using dictionary-based sparse representation[J]. Information Fusion, 2015,25:72-84.
[24]HOSSNY M, NAHAVANDI S, CREIGHTON D. Comments on ′Information measure for performance of image fusion′[J]. Electronics Letters, 2008,44(18):1066-1067.
[25]WANG Q, SHEN Y, ZHANG J Q. A nonlinear correlation measure for multivariable data set[J]. Physica D: Nonlinear Phenomena, 2005,200 (3-4):287-295.
[26]XYDEAS C, PETROVIC V. Objective image fusion performance measure[J]. Electronics Letters, 2000,36 (4):308-309.
[27]YANG C, ZHANG J Q, WANG X R, et al. A novel similarity based quality metric for image fusion[J]. Information Fusion, 2008,9(2):156-160.
[28]CHEN Y, BLUM R, A new automated quality assessment algorithm for image fusion[J]. Image and Vision Computing, 2009,27(10):1421-1432.
|